A Resource Management Method for Improving

Recycling Ratio in Recycling Process Elements

Toshihiro TABATA
Faculty of Information Science and Electrical Engineering, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Hideo TANIGUCHI
Faculty of Engineering, Okayama University
3-1-1 Tsushimanaka, Okayama 700-8530, Japan

ABSTRACT

A process is a program in execution. Processes can
be executed concurrently in operating Systems (OS)
and they may be created and be deleted dynami-
cally. Process creation and termination are required
for program execution. They are an important pro-
cessing, but the cost of them is expensive. The cost
of them affects the execution performance of pro-
grams. We proposed a fast process creation and ter-
mination mechanism by recycling process elements.
The management of preserved process elements is
an important problem for recycling. We also pro-
posed an efficient resource management for recycling
process elements. The proposed method can reduce
the amount of memory consumption of preserved re-
sources. It focused on frequency of program execu-
tion, but it is insufficient to reduce the cost.

In this paper, we propose an improved resource
management method for recycling process elements.
In the method, only one process element with pro-
gram image is preserved for each program with high
frequency in program execution. The method can
reduce the amount of memory consumption of pre-
served process elements. We also describe the imple-
mentation of proposal method on T'ender operating
system and report the contents of experiments and
the result of them.

Keywords: Operating system, Resource manage-
ment, recycle, Process creation, Process termina-
tion, Tender

1 Introduction

A process is a program in execution. Processes can
be executed concurrently in operating Systems (OS)
and they may be created and be deleted dynami-
cally. Process creation and termination are required
for program execution. They are an important pro-
cessing, but the cost of them is expensive. The pro-
cessing of process creation needs creation of virtual

memory space for new process, loading a program
and so on. The processing of process termination
needs the deletion of process elements.

The cost of process creation and termination
affect the execution performance of programs. For
example, Apache HTTP Server sometimes creates a
process for executing a CGI program, when it re-
ceives a request. In this case, the number of cre-
ated processes is same as the number of the requests.
We think that to reduce the cost of process creation
and termination is a crucial issue of server programs.
Therefore, a new method that can reduce the cost
of process creation and termination is required.

We proposed a fast process creation and ter-
mination mechanism by recycling process elements.
We implemented the mechanism on The ENdur-
ing operating system for Distributed EnviRonment
(Tender)[1]. However, preserved process elements
for recycling consume many memory resources.
Therefore, the preserved process elements have to
be managed efficiently.

We also proposed an efficient resource manage-
ment method for recycling process elements[2]. We
focused on frequency in program execution. There
are two types of preserved resources for recycling
from the standpoints of frequency in program ex-
ecution. On programs with high frequency in pro-
gram execution, process elements are preserved with
program image. Thus, they can be recycled when
a process is created from the same program. When
programs with low frequency in execution terminate,
process elements are preserved without program im-
age. They can be recycled for any process that sat-
isfies the condition of recycling.

The proposed method can reduce the amount
of memory consumption of preserved resources. It
focused on frequency of program execution, but it is
insufficient to reduce it. In the method, the number
of preserved process elements with program image
for each program is more than one. One of them
is always recycled when the program is executed.

However, the remains of them (more than 2) are not
recycled if plural processes are not executed concur-
rently. Therefore, the remains of them are useless
and only consume memory.

In this paper, we propose an improved resource
management method for recycling process elements.
In this method, only one process element with pro-
gram image is preserved for each program with high
frequency in program execution. When a preserved
process element with process image of same program
exists, the process is broken up into process elements
without program image. The method can reduce the
amount of memory consumption of preserved pro-
cess elements. It can also improve the ratio of re-
cycling process elements, because preserved process
elements without program image can be recycled for
process creation for every program. Thus, it can re-
duce the cost of process creation. We also describe
the implementation of proposal method on T'ender
operating system and report the contents of experi-
ment and the result of them.

2 Related Work

Many researches that can reduce the cost of process
creation have been proposed in the past. Sticky bit
function and vfork system call can reduce the cost of
process creation in UNIX[3]. Sticky bit is a research
of fast process creation. Sticky bit enables OSs to
recycle a text region.

On Demand Paging (ODP) and Copy on Write
(CoW) are also the researches of memory manage-
ment. Furthermore, ODP and CoW can reduce the
cost.

Existing OSs are not able to recycle all of pro-
cess elements. They cannot also create process ele-
ments in advance. T'ender operating system differs
from them with the point that memory resources can
be recycled in the processing of a process creation.

Furthermore, there is the research of the page
control and the cash memory in the virtual memory,
as the research that is similar to manage the recy-
clable memory resources[4], [5], [6]. These researches
manage the memory with an operation unit that the
memory management provides. For example, an op-
eration unit is a physical page. On the other hand,
page tables and program resources are managed as
an operation unit in the T'ender operating system,
in addition to the physics pages.

3 Tender Operating System

Separation and Individualization of Re-
sources

In Tender, objects to be controlled and managed
by an operating system are called “resources”. We
realized high modularity among the resources. The

‘ place ‘ kind id in a resource

(A) resource identifier

/s
machine 1 machine 2
process program plate

NN

procA procB programA programB plateA plateB

(B) resource name

Figure 1. Resource identifier and resource name.

resources are given resource name and resource iden-
tifier. Figure 1 shows the structure of resource iden-
tifier and resource name.

Besides, the interface of the operation of re-
sources is unified. Furthermore, the program parts,
which operate each resource, are separated and
shared programs are eliminated. The management
information of each resource is also separated be-
tween each resource. In addition, a pointer between
the management tables of each resource is prohib-
ited.

Tender manages resources by resource iden-
tifier and resource names. In addition, resource
identifier and resource name include the informa-
tion of location that indicates a machine. Besides,
resources are controlled by unified interface. As a
result, T'ender can operate local resources and re-
mote resources by the unified interface.

The existence of the process elements of exist-
ing OSs depends on a process that owns them, be-
cause the management information of each resource
is stored in the process management table. If a pro-
cess terminates, the entry of process management
table is cleared. As a result, its process elements
and the information of them are cleared, too.

In Tender, the existence of each resource does
not depend on other resources including a process,
because the table of each resource is separated.
The separation and the individualization of the
resources enable T'ender to preserve the resources
for recycling. We call resources that compose
a process ”process elements”. As a result, each
resource can exist irrespective of the existence
of other resources. Therefore, Tender can also
preserve process elements instead of deletion of
process elements. Tender can recycle preserved
process elements in process creation. As a result,
the cost of process creation and termination is
reduced.

Process elements
A process is an object controlled by OS for ex-

M

emory space

Text segment
Data segment
User stack processor \J
Stack segment N)
Kernel stack N
Process management register) -~
table
Information /ﬁ
needed for -
control of Process 1D ~)
execution
i C) Needed for program
Information : execution
needed for File deseri
ptor '
control of @ Needed for processing

resource o ¢

Figure 2. Process components.

ecuting the program. Various resources compose
the process. Figure 2 shows the components of
process. The components of a process are a program
image, a process management table, needed for
program execution and needed for processing. A
program consists of a text segment, a data segment,
a BSS and a stack segment. A text segment
has the set of instructions that a processor can
execute. A data segment has the set of variables
and character strings with initial values, whereas
BSS has a set of variables without initial values.
A stack segment consists of a user stack and a
kernel stack, which are used in user or kernel
mode respectively. A process management table
has information needed for control of execution
and for control of resources. The former includes
virtual storage space, processor and a set of reg-
ister, etc. and the latter includes file and socket, etc.

Memory Resources on Tender

Figure 3 shows memory resources on Tender.
In this figure, “virtual region” is a resource that
virtualizes the data storage region information
of the physical memory or the external storage.
“Virtual space” is a space of the virtual address and
corresponds to the mapping table where the virtual
address is mapped into the physical address. “Vir-
tual user space” is a space which is accessible from
the processor by the virtual address. It is created
by attaching “virtual region” to “virtual space” and
deleted by detaching. Here, the attaching means to
store the information of data storage region in the
mapping table.

Process Creation
Figure 4 shows the flow of process creation on
Tender. The processing consists of twelve steps.

physical memory

text

data
BSS

user stack

oS

I:lvi:tual region I:lvirtual user space I:lvirtual kernel space Illmllvinual region

Figure 3. Resource of process and memory.

l Get a entry of a process table ‘ 1
Create a virtual region and a
virtual user space for BSS

Get a virtual kernel space for

work space l
l Create a virtual region and a
l Create a program ‘ virtual user space for user stack
l Create a virtual space l l Load contents of text region ‘

Create a virtual region and a l

virtual user space for text

Create a virtual region and a l
virtual user space for data

[llnitialize the entry of a process table]

Load contents of data region]

Load contents of BSS region]

Figure 4. Flow of process creation.

4 Recycle of Process Elements

Overview

Preserving process elements can be realized by the
separation and the individualization of resources.
Recycling the preserved resources can speed up the
processing of process creation. We describe the
mechanism of a fast process creation and termina-
tion as follows.

Figure 5 and figure 6 show the flow of process
creation and termination. Table 1 shows the inter-
face of process creation and termination. The inter-
face of process creation is not changed for recycling
process elements, because the process management
in kernel searches and recycles process elements au-
tomatically. On the other hand, the interface of pro-
cess termination is modified, because users need to
designate which resources should be preserved.

Tender enables resources to be preserved
on process termination, which means that in case
we want to release a resource we can preserve
it without actually deleting it. In addition, it
enables resources to be prepared on process cre-
ation, which means that in case we want to get
a resource we can recycle the resource preserved
in advance without creating it. Therefore, the
processing is expected to be faster when “resources”

Application programs

A

system-call

user proccreate Return process id (pid)

kernel

search

Process
Management

Process elements
for recycle

result (resource id)

create a process
(Process Management recycle

E‘ resources as possible.)

Figure 5. Flow of process creation.

Application programs

A

system-call
user procdelete Return process id (pid)
kemel check rflag

enter (resource id)
(If the resource is A
designated by rflag)

Process
Management

Process elements
for recycle

(delete process elements that

E‘ are not designated by rflag.)

Figure 6. Flow of process termination

l delete a process

are used or released. That is, ”resources” which
had been used before process termination are not
deleted but are preserved. Moreover, preserved
“resources” can be recycled at the next time
of process creation. As a result, the processing
time of "resource” creation or deletion can be faster.

Two Types of Preserved Resources

We proposed efficient resource management for recy-
cling process elements[2]. We focused on frequency
in program execution. There are two types of pre-
served resources for recycling from the standpoints
of frequency in program execution. Table 2 shows
the types of preserved resources.

On programs with high frequency in program
execution, process elements are preserved with pro-
gram image (called typel). Thus preserved process
elements with program image can be recycled when a
process is created from the same program. The pre-
served process elements with program image consist
of virtual memory, memory image of the program on
virtual memory space. The memory image includes
memory space of the text region, the data region,
the bss region and the stack region. The contents of
each region are loaded on the memory space.

On programs with low frequency in execution,
process elements are preserved without program im-

Table 1. Interface of process creation and termina-
tion.

open_proc plateid: an identifier of ”plate”
(plateid, arg: a pointer of arguments

arg, vimid) | vmid: an identifier of virtual space
close_proc pid: an identifier of process

(pid, rflag) | rflag: a flag of preserved process
elements

Table 2. Types of reserved process elements for re-
cyclying.

Type Condition of recycling
Reserved process ele- | Type of program
ments with program
image (type 1)
Reserved process el- | Virtual space: always
ements without pro- | Virtual region: size of
gram image (type 2) virtual region

age (called type2). The process elements of pro-
grams with low frequency are broken up into vir-
tual memory, unmapped memory objects (virtual
regions). There is no memory object on the pre-
served virtual memory. The unmapped memory
object consists of physical memory and disk area
on disk and management table of mapping between
physical memory and disk. Because virtual memory
and unmapped memory objects have no information
associated with a particular program image, they are
recycled for every process creation if they satisfy fol-
lowing conditions. Virtual memory can be recycled
for every process creation. Unmapped memory ob-
jects can be recycled, if the size of an unmapped
memory object is same as a requested size.

5 Proposal Method

Problem

The proposed method[2] can reduce the amount
of memory consumption of preserved resources.
However, the method focused on frequency of pro-
gram execution is insufficient to reduce it. In this
method, the number of preserved process elements
with program image for particular program is more
than one. One of them is always recycled when
the program is executed. However, the remains
of them (more than 2) are not recycled if plural
processes are not executed concurrently. Therefore,
the remains of them may be useless and consume
much memory.

Improved Resource Management
To solve the problem described above, only one
process element with program image is preserved

for each program with high frequency in program
execution. When a preserved process element with
process image of same program exists, the process
is preserved as process elements without program
image.

Advantages: (1) Process elements of type2
can be recycled for every process. Therefore, the
ratio of the success of recycling to process creation
can be improved.

(2) Proposed method improves the ratio of
recycling to process creation with less amount of
memory consumption of preserved process elements.

Disadvantages: The processing time of
process creation and termination, increases a little
when the processes of a program are executed
concurrently. In the case, process elements of typel
can be recycled only once for process creation. On
the other case, process elements of type2 can be
recycled if they satisfy the condition of recycling.

Evaluation

To evaluate proposed method, we got a log of pro-
gram execution by using the command of ”acct” on a
server computer of our laboratory. It consists of 1000
entries of program execution. We made a benchmark
program that creates and deletes a process according
to it. We can simulate the real sequence of program
execution by using it on T'ender.

Processing time of process creation and termi-
nation and the amount of the memory consumption
of preserved process elements are measured in the
evaluation. We cannot get the results associated
with the disadvantage of the old method [2] when
the number of concurrent running process is one.
We can get it when the number is more than one.
To confirm our proposal’s validity through evalua-
tions, the number of concurrent running process is
set one and three.

We performed the evaluations on four condi-
tions as follows.

1) Typel only

)
2) Typel and type2 (old method)
3) Type2 only

)

(
(
(
(4) Typel and type2 (proposal)

Figure 7 and figure 8 show the result when the
number of concurrent running process is one.

(1) The processing time of typel is the shortest in
figure 7, when the number of program execution
increases, because in this case process elements
of typel can be recycled. Processing time of
process creation is the shortest when process
elements with program image are recycled.

2500 —&—Typel only

Typel and type2

—&— Type2 only

2000 -

1500 -

1000 -

Processing time of process creation and deletion
(msec)

0 200 400 600 800 1000

Number of program execution

Figure 7. Processing time of process creation and
termination. (Number of a process is one)

(2) Preserved process elements of typel only con-
sume memory more than other two conditions.

(3) Preserved process elements of type2 only con-
sume memory less than other two conditions,
but the processing time of type2 only is the
longest.

(4) Preserved process elements of typel and type2
consume less memory. Besides, the processing
time of them is relatively short.

That is summarized as follows. Our proposed
method (typel and type2) is reasonable, because it
realizes fewer amount of memory consumption and
fast process creation and termination.

Figure 9 and figure 10 show the result of the
number of concurrent running process is three.

Figure 9 shows the processing time of our pro-
posal is the shortest, because in this case process
elements of typel are preserved for each program.
Besides, if there is no process elements of typel for
target program, process elements of type2 can be
recycled. This method restricts the number of pro-
cess elements of typel. Thus, most of processes are
broken into process elements of type2. Figure 10
shows them the amount of memory consumption of
proposal method is two / three of the old method.

Figure 9 and figure 10 show proposal method
consume memory more than type2. However, the
difference is small and the processing time of pro-
posal method is about half of type2.

Considering from processing time and the
amount of memory consumption, proposal method
balances the amount of memory consumption and
the processing time of process creation and termina-
tion.

12000 —&—Typel only

Typel and type2

10000 | —&— Type2 only

8000
6000 -

4000

000 | F—*

Memory consumption (KB)

0 200 400 600 800 1000

Number of program execution

Figure 8. Memory consumption of preserved process
elements. (Number of a process is one)

1800 - ——Typel only

Typel and type2 (old method)
1600 -

—&— Type2 only

1400 ¢ —>Type1 and type?2 (proposal)

1200 -

1000 -

800

600

400 -

200

Processing time of process creation and deletion
(msec)

0 200 400 600 800 1000

Number of program execution

Figure 9. Processing time of process creation and
termination. (Number of a process is three)

6 Conclusion

We present an improved resource management
method for recycling process elements. In the
method, only one process element with program im-
age is preserved for each program with high fre-
quency in program execution. When a preserved
process element with process image of same program
exists, the process is preserved as process elements
without program image. Process elements without
program image can be recycled for every process.
Therefore, the ratio of the success of recycling to
process creation can be improved. Proposed method
improves the ratio of recycle to process creation with
less amount of memory consumption of recyclable
process elements.

We also report the results of the evaluation of
proposal method. They show our proposed method
(typel and type2) is reasonable, because it realizes
less amount of memory consumption and fast pro-
cess creation and termination. Considering from

20000 - ——Type1 only
Type1 and type2 (old method|

18000 T | —4—Type2 only
16000 |- |~ Typel and type2 (proposal)

14000

12000

10000

8000

Memory consumption (KB)

6000
4000
2000

0 200 400 600 800 1000

Number of program execution

Figure 10. Memory consumption of preserved pro-
cess elements. (Number of a process is three)

processing time and the amount of memory con-
sumption, proposal method balances the amount of
memory consumption and the processing time of
process creation and termination.

As a future work, we will evaluate our proposal
method by using real application programs.

References

[1] H. Taniguchi, Y. Aoki, M. Goto, D. Murakami,
T. Tabata, "Tender Operating System based
on Mechanism of Resource Independence,” IPSJ
Journal, Vol. 41, No. 12, 2000, pp.3363-3374.

[2] T. Tabata, H. Taniguchi, ”"Proposal of Effi-
cient Resource Management for Recycling Pro-
cess Elements,” ITPSJ Transactions on Ad-
vanced Computing Systems, Vol. 44, No.
SIG 10(ACS2), 2003, pp.48-61.

[3] J. S. Quarterman and A. Silberschatz and J. L.
Peterson, ”4.2BSD and 4.3BSD as Examples of
the UNIX System,” ACM Computing Sur-
veys, Vol. 17, No. 4, 1985, 379-418.

[4] A. Braunstein, M. Riley, J. Wilkes, ”Improv-
ing the Efficiency of UNIX File Buffer Caches,”
SOSP: 12th ACM Symposium on Operat-
ing Systems Principles, 1989, pp.71-82.

[5] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, J. Zelenka, ”Informed Prefetching
and Caching,” SOSP’95: 15th ACM Sym-
posium on Operating Systems Principles,

1995, pp.79-95.

[6] V.S. Pai, P. Druschel, W. Zwaenepoel, ”10-Lite:
A Unified I/O Buffering and Caching System,”
OSDI’99: USENIX Association 3rd Sym-
posium, 1999, pp.15-28.

