
GUARANTEE OF SERVICE PROCESSING TIME OF PROCESS GROUP FOR
MULTIMEDIA APPLICATION

Toshihiro TABATA, Yoshinari NOMURA and Hideo TANIGUCHI

Graduate School of Information Science and Electrical Engineering Kyushu University,
Fukuoka 812-8581, Japan

tabata@swlab.csce.kyushu-u.ac.jp, {nom, tani}@csce.kyushu-u.ac.jp

ABSTRACT
Computer performance has improved year by year. As
a result, multimedia applications can be executed on
a computer simultaneously. However multimedia ap-
plications sometimes can not provide a good service
because multimedia applications compete with them-
selves to get computer resources. For this reason, com-
puter resources need to be reserved for multimedia ap-
plications to provide a good service. Besides, there are
a lot of service applications that consist of multi pro-
cess. Thus multi process need to be a unit of resource
reservation to provide a service of appropriate quality.
We call multi process a process group. In this paper,
we propose execution that is a unit of processor time
assignment. In addition we propose a mechanism for
guaranteeing processing time of process groups by ex-
ecutions.

1. INTRODUCTION

Multimedia applications that play movies and sounds
require much computer resources. Especially proces-
sor time assignment is important for multimedia appli-
cations to provide a good service because multimedia
applications need a lot of processing time. Thus mul-
timedia applications need to be guaranteed it’s pro-
cessing time. However it is difficult to guarantee pro-
cessing time of multimedia applications by conventional
time-sharing scheduling. As a result, multimedia appli-
cations compete with themselves to get computer re-
sources when they are executed on the same computer
simultaneously.

Multi process need to be a unit of guarantee of com-
puter resources because most of applications consist of
multi process. However it is difficult to guarantee com-
puter resources of applications because multi process
should be a unit of resource reservation. Also, number
of processes which compose service applications, is not
constant. For this reason, it is difficult to specify to-
tal amount of computer resources that are guaranteed

to a service application when one process is a unit of
resource reservation.

In this paper, we propose execution that is a unit of
processor time assignment. In addition we propose a
mechanism for guaranteeing processing time of a pro-
gram by an execution. Execution enables an operating
system to regulate execution speed and to guarantee
processing time of a program. We call degree of assign-
ing processor time “degree of processor assignment”.
Execution has “degree of processor assignment”. Two
types of degree of processor assignment are realized in
execution. To represent process groups by hierarchi-
cal execution enables an operating system to guarantee
service-processing time of process groups.

This paper is organized as follows. Details of exe-
cution are described in the next section. In Section 3,
hierarchical execution is presented. In Section 4, basic
evaluation is discussed. In Section 5, related works are
described. Finally some conclusion and remarks are
given in Section 6.

2. EXECUTION

2.1. Overview

A process is a unit of program execution in conventional
operating systems. A process has degree of processor
assignment. For example, a priority is associated with
each process in UNIX and the processor is allocated to
the process with the highest priority. Hence a process
may be executed soon after the process was created.

We separated degree of processor assignment from
a process. Degree of processor assignment was named
execution. The remains of a process are named a “pro-
cess”. A process does not have degree of processor as-
signment. An execution has degree of processor assign-
ment.

Scheduling queues appear in Figure 1. Before we
introduce executions, processes are kept on linked list
that corresponds to a priority of a process. After we

�

$ %

&

=

6FKHGXOLQJ�TXHXHV�ZLWKRXW�H[HFXWLRQ�

� $ %

&

=

6FKHGXOLQJ�TXHXHV�ZLWK�H[HFXWLRQ�

$

=

&

%

Figure 1: Change of scheduling queues.

3URFHVVRU

([HFXWLRQ�0DQDJHU

$WWDFKHG
$ % &

'&%$ (

��([HFXWLRQ ��3URFHVV

Figure 2: Relation between process and execution.

introduce executions, executions are kept on linked list
that corresponds to a priority of executions. Processes
are linked to executions.

Execution enables an operating system to reserve
processes without allocation of processor. A process can
be executed by attaching an execution. Thus creating
processes in an idle processor time can speed up process
creation.

Figure 2 shows the relation between executions and
processes. Multi execution can be attached to a pro-
cess. The example is process B in Figure 2. Execution
manager points to an execution with the highest de-
gree of processor assignment. All processes need to be
attached to executions to be assigned processor time.

Execution manager selects a process in scheduling
queues. The process is executable and is attached to
execution with a highest priority. The amount of pro-
cessor time that is assigned to a process is in proportion
to the total amount of degree of processor assignment
of executions that is attached to the process.

time-block

time-slot

Figure 3: Relation between time-slots and a time-block.

2.2. Types of Execution

There are two types of execution. Those are execution
with performance and execution with priority.

2.2.1. Execution with Performance

Execution with performance has degree of processor as-
signment that indicates a ratio (%) to processor bare
performance. The processor bare performance can be
defined as 100%. When a process is attached to an ex-
ecution with n%, the assigned processor time is n% of
the processor bare performance.

We describe the mechanism of assigning processor
time as follows.

綉 ime-slot and Time-block
An operating system can regulate processor assign-

ment by controlling a state of a process. We named a
unit of processor assignment “time-slot”. We named a
chunk of time-slots “time-block”. Figure 3 shows the
relation between time-slots and a time-block. An oper-
ating system assigns processor to an execution that is
assigned to current time-slot. If current time-slot is not
assigned to any process, an operating system executes
a process with execution that has a highest priority.

An execution with n% degree of processor assign-
ment is assigned n% of time-slots in a time-block. For
example, a time-block consists of six time-slots in Fig-
ure 3. Also, two time-slots are assigned to an execution
in a time-block. As a result, the execution is assigned
33% of processor bare performance.

絎 ethod of Assigning Time-slots
Degree of regulating program execution speed can

be evaluated by the processing time of program. How-
ever the processing time of program is not enough to
evaluate degree of regulating program execution speed
because the processing time is measured between start
and finish of processing. What is important is to evalu-
ate uniformity of processing between start and finish of
processing. If behavior of the processing is not smooth,
the process can not provide a service of a good quality.
In order to execute a process smoothly, it is necessary
to execute regulated the processing in a constant inter-
val.

We proposed a new cyclic like assignment method[1].
When n time-slots are assigned, (i-th assigned time-slot

YLUWXDO�XVHU�VSDFH

YLUWXDO�UHJLRQ YLUWXDO�VSDFH

SURJUDP

SODWH

SURFHVV

V\VWHP�FDOO�RI�SURFHVV�FUHDWLRQ�DQG�GLVDSSHDUDQFH

H[HFXWLRQ

YLUWXDO�NHUQHO�VSDFH

Figure 4: Relation among resources on process creation
and disappearance.

position) = (total number of time-slots in a time-block)
* (i–1) / n. The method can assign time-slots at a
constant interval. Therefore uniformity of processing
is best in our proposed method.

Many multimedia applications are interactive. For
example, a multimedia application that plays a movie
shows the motion of picture to a user. The application
has to be assigned processor time in a constant interval
to provide a good service. Otherwise, the motion of
picture does not move smoothly. Our mechanism would
be effective for multimedia applications.

2.2.2. Execution with Priority

Execution with priority has degree of performance as-
signment that indicates a priority. Execution with pri-
ority that has a highest priority is assigned processor.
However execution with performance is taken prece-
dence over execution with priority because assigned
processor time of execution with performance have to
be guaranteed.

2.3. Implementation

We implemented execution in Tender operating system[2]
that we have been developing. In this subsection, we
describe overview of Tender operating system.

In Tender, objects to be controlled and managed
by operating system are called “resources”. We real-
ized high modularity of the resources. As a result, each
resource can exist irrespective of existence of other re-
sources. Tender manages resources by resource iden-
tifiers and resource names. Besides, resources are con-
trolled by unified interface.

The relation among the resources in the processing
of process creation and deletion is shown in Figure 4.

Arrows show the relation among the resources. A pro-
cess of a conventional operating system was separated
to 8 resources. Plate corresponds to file.

The separation and individualization of the process
resources clarified the relation between process and el-
ements of process. Furthermore, it realized that the
elements of a process could exist irrespective of exis-
tence of process. For example, all of memory space is
released when a process disappears in UNIX. There-
fore, the memory space is not recycled. In Tender,
the memory space that is designated can be preserved
when the process disappears. If the memory space is
recycled on process creation, the processing of process
creation is sped up,

2.4. Interface

Table 1 shows interface of execution. 8 system-calls are
implemented on Tender.

2.5. Merit of Execution

Merits of execution are described as follows[3].

(1) Fast process creation and deletion.

(2) Suspension and resume a processing by attach-
ment and detachment of an execution.

(3) Process restarting by initializing only data seg-
ment.

In addition, merits of attachment of multi execution
to a process are described as follows.

(1) User level scheduling by attachment of multi ex-
ecution.

(2) Increase of assigned processing time by attach-
ment of multi execution with priority.

(3) Guarantee in processing time by attachment of
executions with performance and executions with
priority.

3. HIERARCHICAL EXECUTION

We expressed executions with tree structure to guaran-
tee the processing time of a process group. We describe
hierarchical execution in this section.

3.1. Requirement

Requirements for hierarchical execution are described
as follows.

(1) A process group is expressed by one execution.

Table 1: Interface of execution.
No. Form Contents of operation
1 creat execution(mips) Execution is created and execution identifier is re-

turned. When mips is from 1 to 100, the pro-
cess runs with the mips% of bare processor perfor-
mance. When mips is from -255 to 0, mips means
priority.

2 delete execution(execid) Execution(execid) is deleted.
3 attach execution(execid, pid) Execution(execid) is attached to process(pid).
4 detach execution(execid, pid) Execution(execid) is detached from process(pid).
5 wait execution(pid, chan) Assignment of processor time to process(pid) is

stopped. The process state changes to WAIT state.
If pid equals 0, pid means current running process.
Chan means identifier of WAIT.

6 wakeup execution(pid, chan) Assignment of processor time to process(pid) is
restarted. The process state changes to READY
state. If pid equals 0, the processes with chan are
restarted. If chan equals 0, chan means all identi-
fier of WAIT.

7 dispatch(pid) Process(pid) is run.
8 control execution(execid, mips) Degree of processor assignment of execution (exe-

cid) is changed to mips.

(2) Each process in a process group has degree of pro-
cessor assignment.

(3) Degree of processor assignment of a process group
is indicated same as a process.

3.2. Relation between Execution and Process
Group

Process group has degree of processor assignment, indi-
cated by executions because process group is to be con-
trolled like a process. Figure 5 shows relations between
process and execution. One process can be attached
to more than one execution (1). A service application
consists of three processes (2). The service application
can be attached to more than one execution (3).

Figure 6 shows relation between each process and
execution. Each process of process group is attached
to more than one execution. Thus, each process has
degree of processor assignment.

3.3. Mechanism of Hierarchical Execution

In this subsection, basic mechanism of hierarchical exe-
cution is described. Also, modified interface and schedul-
ing mechanism are described.

$
$

$ % &

6HUYLFH

$

$ % &

6HUYLFH

$

%

&

èñé

èòé

èóé

%

Figure 5: Relation between execution and process
group.

3.3.1. Basic Mechanism

Execution manager requires information of process groups
and processes for process scheduling. For this reason,
process groups are represented by executions. As a re-
sult, the execution manager can have the information.
It prevents the overhead of scheduling from increasing.

Structure of a process group is represented in tree
structure of executions because relation between a pro-

$ % &

6HUYLFH

$

'&% (

Figure 6: Relation between execution and each process
of process group.

$��

$�D %�D &�D

$ % &

3URFHVVRU

6HUYLFH

%�� &��

' (

ú5HODWLRQ�RI�DWWDFKPHQW

'�D

Figure 7: Representation of process group by execu-
tions.

cess group and processes is represented in parent and
child. Figure 7 shows relations between a process group
and executions. Node of execution tree is called “di-
rectory execution”. Directory execution represents a
process group. Leaf is called “leaf execution”. Leaf
execution is attached to a process.

The total amount of assigned processor time of leaf
executions equals assigned processor time of parent di-
rectory execution. Degree of processor assignment of
leaf executions indicates a priority or a ratio (%) to
assigned processor time of parent directory execution.
In the leaf execution, the ratio is indicated where the
parent directory execution is defined as 100%.

Depth of execution tree is more than one. As a
result, it is possible to create a process group into other
process group. Figure 8 shows execution tree when the
depth of execution tree is n. In the case, a directory
execution is attached to other directory execution.

Figure 9 shows a case that more than one execution
is assigned to a process group. When second execution
(B1#) is attached to a process group, leaf executions
(D2b, E2b, F2b) have to be created and attached to each

Figure 8: Hierarchical execution tree(n depth).

$ % &

3URFHVVRU

6HUYLFH

$�� %�� &��

$�D %�D &�D '�E (�E)�E
'

ú5HODWLRQ�RI�DWWDFKPHQW

Figure 9: Two process group executions.

process (A, B, C) in the process group. As a result,
each process of the process group is attached to two
leaf executions.

3.3.2. Modified Interface

Two interfaces are modified. The modified interfaces
are relation to operations of attachment and detach-
ment. Table 2 shows the modified interfaces.

3.3.3. Process Scheduling Mechanism

Figure 10 shows process-scheduling mechanism. Sched-
uler is executed by timer interrupt. First, the scheduler
checks next time-slot. If the time-slot is not attached
to any executions, the scheduler chooses an execution
with a highest priority to run. Otherwise the sched-
uler checks whether the execution is directory execu-
tion. Next, if the execution is directory execution, the
scheduler checks directory execution recursively. Oth-

Table 2: Additional execution interface for execution tree.
No. Form Contents of operation
3’ attach execution(execid, rid) Rid means process identifier(pid) or execution iden-

tifier(execid2).

(1) If rid means pid, execution (execid) is attached
to process (rid).

(2) If rid means execid2, execution (execid) is at-
tached to execution (execid2). Execution (exe-
cid2) is parent of execution (execid).

4’ detach execution(execid, rid) Rid means process identifier(pid) or execution iden-
tifier(execid2).

(1) If rid means pid, execution (execid) is detached
from process (rid).

(2) If rid means execid2, execution (execid) is de-
tached from execution (execid2). Execution (ex-
ecid2) belong to first class.

7LPHU�LQWHUUXSW

\HV

3URFHVV�VWDWH�"
581�RU�
5($'<

6HOHFW�H[HFXWLRQ�E\�SULRULW\
:$,7

QR5XQQLQJ�SURFHVV�VWDWH�
EHFRPHV�:$,7

1H[W�WLPH�VORW�
DVVLJQHG�WR�H[HFXWLRQ"

$WWDFKHG�WR�
H[HFXWLRQ"

\HV

QR

5XQ

6HDUFK�QH[W�H[HFXWLRQ

Figure 10: Flow of process scheduling.

erwise the scheduler checks whether the state of the
process that is attached to the execution, is RUN or
READY. If the process is RUN or READY, a proces-
sor time is assigned to the process.

3.4. Merit of Hierarchical Execution

Merits of hierarchical execution are described as fol-
lows.

(1) Attachment of execution with performance en-
ables a service application to regulate its execu-

3URFHVVRU

6HUYLFH�$

H[HF��� H[HF��� H[HF��� H[HF��� H[HF��� H[HF���

H[HF�� H[HF�� H[HF��

H[HF��� H[HF��� H[HF���

$�� $�� $��

6HUYLFH�%

%�� %�� %��

6HUYLFH�&

&�� &�� &��

Figure 11: Test case for evaluation.

tion performance.

(2) Attachment of execution with performance and
execution with priority enables a service applica-
tion to guarantee its processing time.

(3) Hierarchical execution tree can represent struc-
ture of service applications.

4. EVALUATION

We measured processing time of process groups. Figure
11 shows test case for evaluation. There are three pro-

Table 3: Degree of processor assignment of service A
and C.

service A service C
exec1 30% exec3 6
exec1-1 20% exec3-1 50%
exec1-2 50% exec3-2 6
exec1-3 6 exec3-3 6

Table 4: Degree of processor assignment of service B.
case exec2 exec2-1 exec2-2 exec2-2
1 40% 30% 40% 6
2 40% 30% 40% –
3 40% 30% – 6
4 40% – – 6
5 40% – – –

cess groups. Each process group has three processes.
The processing of the processes is using processor only.
Table 3 shows that degree of processor assignment of
service A and C. Table 4 shows that degree of processor
assignment of service B in each case. We evaluated the
five test cases that are shows Table 4. Degree of pro-
cessor assignment of executions that consist of service
B changed in each case. Degree of processor assign-
ment of executions that consist of service A and C are
constant in each case. Results of measurement appear
in Figure 12 and 13.

We found followings from the result of Figure 12:

(1) Ratio to processing time of process group A was
constant. Execution with performance can regu-
late performance of a process group.

(2) Ratio to processing time of process group B was
40% when exec2-3 existed. On the other hand,
the ratio to processing time of process group B
was less than 40% when exec2-3 did not exist.
Since execution with performance did not require
performance as much as possible, process group
B abandoned remains of processing time. In case
2, the remains of processing time is 12% (= 40%
* (100% - (30% + 40%))).

(3) Processing time that is not assigned to process
group A and B is assigned to process group C.

(4) Ratio to processing time of each process group
is in accordance with degree of processor assign-
ment. Also, ratio to processing time in each pro-

�| ��| ��| ��| ��| ��| ��| ��| ��| ��| ���|

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

Figure 12: Result of measurement (one execution is
attached to service A).

�| ��| ��| ��| ��| ��| ��| ��| ��| ��| ���|

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

º¸Ê¼�

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

¼Ï¼º���

Figure 13: Result of measurement when two executions
are attached to service A.

cess on each process group is in accordance with
degree of processor assignment.

Next, we attached another execution with priority
to process group A. The priority is 6. Also, we attached
three leaf executions to processes in process group A.
Degree of processor assignment of the leaf executions is
the same as exec2-1, exec2-2 and exec2-3. The results
of evaluation appear in Figure 13. The following results
were obtained from Figure 13:

Processing time of process group A is approximately
equal to sum of 30% to processor time and processing
time of process group C. That is, processing time of
process group C indicates processing time of execution
with priority. Thus processing time of process group A
can be ensured at least 30%.

5. RELATED WORK

Several studies have been made on process scheduling
mechanism. A feedback-driven approach is used for
real-time application[4]. Also, some relevant works are
based on period and proportion [5][6]. Proportional
scheduling[7] presents relative execution rates of com-
putation as degree of processor assignment. Our pro-
posed mechanism presents a rate to bare processor per-
formance as degree of processor assignment.

Hierarchical scheduler[8] has some scheduling mech-
anism. And a scheduling mechanism can be applied to
a process. Our proposed mechanism has some schedul-
ing mechanism. Besides, it can apply some scheduling
mechanisms to one process at the same time.

6. CONCLUSION

In this paper, we propose a guarantee mechanism of
service processing time of process groups by execution.
Processor time assignment unit is called “execution”.
Execution has two types of degree of processor assign-
ment that are “execution with performance” and “ex-
ecution with priority”. Attachment of executions with
performance and executions with priority enables an
operating system to guarantee processing time of pro-
cesses.

Structure of process group is represented in tree
structure of execution. Depth of execution tree is more
than one. We described three merits of hierarchical
execution as follows. Attachment of execution with
performance enables service applications to regulate its
execution performance. Attachment of execution with
performance and execution with priority enables service
applications to guarantee its processing time. Hierar-
chical execution tree can represent structure of service
applications.

We measured processing time of process groups.
The following results were obtained from measurements:
Execution with performance can regulate performance
of process groups. Ratio to processing time of each pro-
cess is in accordance with degree of processor assign-
ment. Processing time of process group can be ensured
by execution with performance.

As a future work, we will evaluate the mechanism
on a service application.

7. REFERENCES

[1] TABATA, T., TANIGUCHI, H. and USHI-
JIMA, K.: Method of Improving Uniformity of
Processing on Program Speed Control Mechanism,

Proceedings of 59th National Conventions of IPSJ,
No. 1, pp.37–38 (1999(in japanese)).

[2] TABATA, T. and TANIGUCHI, H.: Guarantee
of Service Processing Time by Execution on Tender
Operating System,, Transactions of IPSJ, Vol.41,
No.6, pp.1745–1754 (2000(in japanese)).

[3] TABATA, T. and TANIGUCHI, H.: Implemen-
tation and Evaluation of Speed Control Mecha-
nism of Program Execution on Resource Execu-
tion on Tender, Transactions of IPSJ, Vol.40, No.6,
pp.2523–2533 (1999(in japanese)).

[4] Steere, D. C., Goel, A., Gruenberg, J.
and McNamee, D.: A Feedback-driven Propor-
tion Allocator for Real-Rate Scheduling, OSDI’99:
USENIX Association 3rd Symposium, pp.145–157
(1999).

[5] Nieh, J. and Lam, M. S.: The Design, Imple-
mentation and Evaluation of SMART: A Sched-
uler for Multimedia Applications, SOSP’97: 16th
ACM Symposium on Operating Systems Principles,
pp.184–197 (1997).

[6] Jones, M. B., Rosu, D. and Rosu, M.-C.:
CPU Reservations and Time Constraint: Efficient,
Predictable Scheduling of Independent Activities,
SOSP’97: 16th ACM Symposium on Operating
Systems Principles, pp.198–211 (1997).

[7] Waldspurger, C. A. and Weihl, W. E.: Lot-
tery Scheduling: Flexible Proportional-Share Re-
source Management, OSDI’94: USENIX Associa-
tion 1st Symposium, pp.1–11 (1994).

[8] Goyal, P., Guo, X. and Vin, H. M.: A Hier-
archical CPU Scheduler for Multimedia Operating
Systems, OSDI’96: USENIX Association Second
Symposium, pp.107–121 (1996).

