
ROUTE DETECTING SYSTEM USING MULTI-AGENT FOR MOBILE AGENTS

Yuki KOTEGAWA

Graduate School of Information Science
and Electrical Engineering Kyushu Univ.
6-10-1 Hakozaki, Higashi-ku, Fukuoka

812-8581 Japan
kotegawa@itslab.csce.kyushu-u.ac.jp

Toshihiro TABATA, Kouichi SAKURAI

Faculty of Information Science
and Electrical Engineering Kyushu Univ.
6-10-1 Hakozaki, Higashi-ku, Fukuoka

812-8581 Japan
{tabata, sakurai}@csce.kyushu-u.ac.jp

ABSTRACT

The effects of mobile agent technologies are expected in
mobile environment. However, the problem of security ex-
ists. Malicious host may tampers with a mobile agent. In
this paper, we propose a system which records a migration
route of a mobile agent in secure. Moreover our proposal
corresponds, when the mobile agent is terminated unjustly.

1. INTRODUCTION

1.1. Background

Using mobile agent technologies, an Agent-Owner can leave
a processing on a computer network to an agent. Moreover,
communication between hosts can be localized to the com-
munication between programs in a host, and it can also re-
duce the communication delay which is the bottleneck of
processing using network communication. Especially, the
effects of mobile agent technologies are expected in mobile
environment because of low spec mobile PC and unstable
network.

However, problems of security occur with mobility that
is a feature of mobile agent technologies. Those problems
can be divided into three problems. One is to protect hosts
from agents. Another is to protect agents from agents. The
other is to protect agents from hosts. Specialty, third prob-
lem is important since an agent is defenseless to a host. A
malicious host is able to tamper with an agent or terminate
it. That is, an agent might be tampered or terminated by a
malicious host. Therefore, complete protection of an agent
or detection of a tampering against an agent is required.
Moreover, a secure recording of a migration route of an
agent is also required. If a problem occurs to the agent,
searching of the agent is required using the route record.

There are some ideas to protect agents completely such
as “Tamper-proof devices” [1], “Obfuscation of programs”
[2], and “Mobile Cryptography” [3]. However, there is a
problem that the malicious hosts don’t install “Tamper-proof
devices. Moreover, about “Obfuscation”, there is a problem

that technique which evaluates the effect quantitatively has
not been established. About “Mobile Cryptography”, there
is a problem that it can use only for limited functions. Thus,
it can be said that it is very difficult to protect agents com-
pletely at present. Therefore, importance is attached to ideas
which detect tampering such as “Execution Traces” [4].

On the other hand, there is an idea [5] using communi-
cations between two agents for recording of an agent’s mi-
gration route. However, the idea isn’t suitable on the case
where an agent is terminated.

1.2. Our contribution

In this paper, we propose a system which records a migra-
tion route of a mobile agent in secure. Moreover our pro-
posal corresponds, even if the mobile agent is terminated
unjustly.

2. AGENT’S ROUTE RECORDING ALGORITHM

In this section, existing agent’s route recording algorithm
proposed by Roth.

2.1. Roth’s Algorithm

Roth’s proposal [5] is as follows.

Definition

Ha the host which is visited by agenta.
hi(2 Ha) the ith host which is visited by an agent.
id(hi) the identity of hosthi.
previ agenta’s idea of the identityid(hi−1) of

its previous hop
nexti the identity of the next hop agenta wants to take

while being on hosthi.
hn the agent’s routes end at their origin,

hn = h0 for a route withn hops.

Initialization
Let h0 be the origin of agentsa andb. h0 doesn’t attack to



a andb.
Let next0 be the first hop of their respective itineraries.

Stepi, i ∈ {1, ..., n}
Agentsa sends thenexti and theprevi to agentb over the
authenticated channel. Agentb learnsid(hi) using the au-
thentication. Agentb verifies thatid(hi) = i−1

∧
previ =

id(hi−1) and appendsnexti to the stored route. Processing
of the agenta and the agentb are shown in ListA and ListB.

ListA. Processing of the agent “a”
A.1 arrives athi.

A.2 sends messages “previ” and “nexti”
to the agentb throughhi.

A.3 performs tasks.

A.4 migrates tonexti.

ListB. Processing of the agentb (Recording)
B.1 receives messages “previ” and “nexti”

over the authenticated channel

B.2 if (id(hi) = nexti−1

∧
previ = id(hi−1)),

appendsnexti to the stored route.

2.2. features

By using Roth’s algorithm, under the conditions thatHa and
Hb don’t conspire, an agent’s route is safely recordable.

2.3. problems

When an agent is terminated, this algorithm cannot judge
whether it is responsible for which ofhi andhi+1.

3. OUR PROPOSAL

In this section, we propose a system that can detect an agent’s
migration route even if the agent was terminated by a ma-
licious host. We realize our proposal using three kinds of
agents. The agents are classified into the followings.

1. Task-Agent
An agent who processes tasks instead of an Agent-
Owner. The Task-Agent is performed at arbitrary hosts.

2. Route-Agent
An agent who records a Task-Agent’s migration route.
The Route-Agent is performed at a trusted host.

3. Search-Agent
An agent who is generated and used by a Route-Agent
in order to search whether a Task-Agent was termi-
nated. The Search-Agent is performed at arbitrary
hosts.

The outline figure of the proposal system is shown in
Fig. 1.

Host i Host i+1

Task
Agent

Route
Agent

Search
Agent

migration

receipt

Authenticated
communication

migration

creation

Trusted- Host

Fig. 1. proposed system

3.1. Premises

Our proposal is premised on the following conditions.

1. Each host can sign data in which oneself has respon-
sibility using a public key.

2. A Task-Agent, a Route-Agent and a Search-Agent are
given the authentication channel by hosts.

3. Each Host other than Trusted-Host may terminate agents.
4. Communication channels between hosts are secure.

Therefore, an agent is never tampered by a third per-
son during migration.

3.2. Definition

Hosti the host a Task-Agent visits to the ith.
This host mignt terminate a Task-Agent.

id(X) the identity of a entity “X”.
previ an agenta’s idea of the identityid(Hosti−1) of

the agent’s previous hop.
nexti the identity of the next hop agenta wants to take

while being on hosthi.
Signx(M) a signature to a messageM by Hosti.

3.3. Processing of our system

We explain Processing of our proposed system and discribe
security of the proposal.

3.3.1. Task-Agent

First, After a Task-Agent arrives atHosti, the Task-Agent
sends some data to a Route-Agent executed at a Trusted-
Host. Some data are “previ” and “nexti”. “ previ” is the
identity of the host that the Task-Agent believes that the



Task-Agent visits beforeHosti. “nexti” is the identity of
destination that the Task-Agent wants to migrate to. When
these data are sent, these are signed byHosti. Then, af-
ter the Task-Agent performs their tasks, the Task-Agent mi-
grates to next hostHosti+1. Although The migration of
the Task-Agent is performed byHosti, if the migration
to Hosti+1 is failure, the Task-Agent changes next host
Hosti+1 to Host′i+1. This process is continued until move-
ment is successful. The flow of processing of a Task-Agent
is shown in List 1.

3.3.2. Hosti

WhenHosti receives a Task-Agent and a signature “Sign

i−1(id(Hosti−1), id(Hosti))” from Hosti−1, Hosti veri-
fies the signature. If verification is ture,Hosti returns a sig-
nature “Signi(id(Task-Agent))” as the receipt toHosti−1.

Then the Task-Agent is executed atHosti. If the Task-
Agent wants to send messages “previ” and “next′i” to a
Route-Agent,Hosti creates signaturesSigni(previ, nexti)
andSigni−1(id(Hosti−1), id(Hosti)). And Hosti sends
these signatures to the Route-Agent.

If the Task-Agent wants to migrate to next hostHosti+1,
Hosti creates a clone of the Task-Agent for backup. Then
Hosti sends a signatureSigni(id(Hosti), id(Hosti+1))
and one of the Task-Agents toHosti+1. After Hosti+1 re-
ceives the Task-Agent,Hosti+1 returns a signature “Sign

i+1(id(Task-Agent))” as the receipt toHosti. If Hosti
receives the receipt, the migration is succusessful and then
the remain of the Task-Agents is deleted.

But if Hosti+1 has malice,Hosti+1 will not return the
receipt. In this cace,Hosti judges that migration is failure.
if the migration is failure,Hosti repeates the migration pro-
cess similarly against another host. The flow of processing
of Hosti is shown in List 2.

3.3.3. Route-Agent & Search-Agent

A Route-Agent records the route of a Task-Agent. The
Route-Agent receives signatures “Signi(previ, nexti)” and
“Signi−1(id(Hosti−1), id(Hosti))” from a Task-Agent thr
oughHosti. Then the signatures verified. If the verification
is ture, the Route-Agent comparesid(Hosti) with nexti−1

then comparesprevi with id(Hosti−1). If the result of the
comparisons is true, the Route-Agent appendsid(Hosti) to
the stored route.

After recording ofHosti is finished, the Route-Agent
measures communication delay “D”. Then let NEXTTIME
be func(D)+TaskTime. func(D) is a suitable function which
takes D to an argument. And TaskTime is a prediction pro-
cessing time of a Task-Agent in one host. If the Route-
Agent doesn’t receive next signatures from the Task-Agent
throughnexti within NEXTTIME, the Route-Agent cre-
ates a Search-Agent. Then the Search-Agent migrates to

Hosti and gets a signatureSigni+1(id(Task-Agent)). If
the Route-Agent receives the signature from the Search-
Agent,Hosti+1 is the malicious host. If not,Hosti is the
malicious host.
The flows of processing of a Route-Agent and a Search-
Agent are shown in List 3 and List 4.

List1. Processing of a Task-Agent
1.1 arrives atHosti.

1.2 sends two messages “previ” and “nexti”
to a Route-Agent throughHosti.
(At this time,Hosti signs the two messages.)

1.3 performs tasks.

1.4 migrates toHosti+1.

1.5 if can’t migrate toHosti+1,
while (migration=failure){

1.5.1 changesHosti+1 to Host′i+1

1.5.2 sends two messages “previ” and “next′i” to the
Route-Agent throughHosti.
(At this time,Hosti signs the two messages.)

1.5.3 migrates toHost′i+1.

}

List2. Processing ofHosti
2.1 receives a Task-Agent and

Signi−1(id(Hosti−1), id(Hosti)) from Hosti−1,
2.2 if the signature is true

sends the message “Signi(id(Task-Agent))”
to Hosti−1.

2.3 executes the Task-Agent.

2.4 if the Task-Agent sends two messages “previ”
and “next′i” to the Route-Agent throughHosti,

sendsSigni(previ, nexti)
andSigni−1(id(Hosti−1), id(Hosti)).

2.5 if the Task-Agent migrates toHosti+1,
Hosti creates a clone of the Task-Agent.
Hosti sendsSigni(id(Hosti), id(Hosti+1)) and
one of two Task-Agents toHosti+1.

2.6 if receives “Signi+1(id(Task-Agent))”,
deletes the remain of the Task-Agents.

else sets “migration=failure”.

2.7 if a Search-Agent needs received signature,
passes “Signi+1(id(Task-Agent))”
to the Search-Agent.

List3. Processing of a Route-Agent
3.1 receives signatures “Signi(previ, nexti)”

and “Signi−1(id(Hosti−1), id(Hosti))”
from a Task-Agent throughHosti.

3.2 verifies the signetures.

3.3 if the verification is falth,



processing are stoped.

3.4 if (id(Hosti) = nexti−1

∧
previ = id(Hosti−1)),

appendsid(Hosti) to the stored route.

3.5 measures communication delay “D” withHosti.

3.6 sets “NEXTTIME = func(D) + TaskT ime”

3.7 if doesn’t receive next signatures
within NEXTTIME from nexti,

creates a Serch-Agent.

3.8 receivedSigni+1(id(Task-Agent))
from the Serch-Agent.

3.9 if (Signi+1(id(Task-Agent))=null),
the malicious host isHosti.

List4. Processing of a Search-Agent
4.1 getsid(Hosti) andnexti from the Route-Agent who

created the Search-Agent.

4.2 migrates toHosti.

4.3 getsSigni+1(id(Task-Agent)) from Hosti.

4.4 sendsSigni+1(id(Task-Agent)) to Trusted-Host
where the Route-Agent performed.

4. DISCUSSION

In this section, we discuss the security against attacks from
malicious hosts.

4.1. The case where a sender host has malice

Although a maliciousHosti doesn’t send a Task-Agent to
Hosti+1, it is assumed thatHosti claims that he sends the
Task-Agent toHosti+1. In this case, A Route-Agent can’t
receive messagesSigni(previ, nexti) andSigni−1(id(Ho-
sti−1), id(Hosti)) from the Task-Agent throughHosti+1.
Thus the Route-Agent creates a Search-Agent and sends the
Search-Agent toHosti. Although the Search-Agent is go-
ing to get a signature “Signi+1(id(Task-Agent))”, Hosti
doesn’t have the signature. More overHosti can’t also cre-
ate the signature. As a result, it becomes clear thatHosti
did injustice.

4.2. The case where a receiver host has malice

It is assumed that a maliciousHosti+1 incriminate a honest
Hosti. Hosti+1 might claim to have received Task-Agent
fromHost′i In this case,Hosti+1 must send “Sign′i(id(Ho-
st′i), id(Hosti+1))”. But Hosti+1 doesn’t have the private
key of Host′i. Thus Hosti+1 can’t create the signature.
ThereforeHosti+1 can’t incriminate a honestHosti.

On the other hand,Hosti+1 may terminate the Task-
Agent. First, it is assumed that the Task-Agent is terminated
withoutHosti+1 sends a notice of reception “Signi+1(rece
ived)” to Hosti. However,Hosti stores the clone of the

Task-Agent. Thus the Task-Agent can migrate to another
host fromHosti again. Next, it is assumed that the Task-
Agent is terminated afterHosti+1 sends a notice of recep-
tion “Signi+1(id(Task-Agent))” to Hosti. In this case,
since A Route-Agent can’t receive messagesSigni(previ,
nexti) andSigni−1(id(Hosti−1), id(Hosti)) from the Ta-
sk-Agent throughHosti+1, the Route-Agent creates a Sea-
rch-Agent and sends the Search-Agent toHosti. Then,
since the Search-Agent can get a reception signature “Sign

i+1(id(Task-Agent))”, it becomes clear thatHosti+1 has
malice.

5. CONCLUSIONS

In our proposal, a Task-Agent performs only tasks given by
an Agent-Owner. And a Route-Agent and a Search-Agent
are performed independently of the Task-Agent. By using
three kinds of agents, recording of a Task-Agent’s route and
execution of the Task-Agent’s task are processed indepen-
dently. Thus, the recording of the Task-Agent’s route can
be performed without affecting the execution of the Task-
Agent. Moreover, only when a problem arises in a Task-
Agent, a Search-Agent is created. Thus, when satisfactory,
the increase in useless network load can be prevented as
possible.

The following model is assumed when using our pro-
posed system. 1) An Agent-Owner uses mobile PC and
wireless LAN. 2) Hosts that perform an agent are connected
in static network.

For example, first, an Agent-Owner transmits a Task-
Agent, a Route-Agent and a Search-Agent to a trusted host
through wireless LAN. Then, the trusted host transmits the
Task-Agent to the first host. Moreover, the Route-Agent and
the Search-Agent are performed by the trusted host. Then
those agents supervise a migration route of the Task-Agent
instead of the Agent-Owner. Thus, once the Agent-Owner
transmits agents, it is not necessary to continue connecting
to the network until he receives an agent’s result.

It is necessary to perform quantitative evaluation of the
execution efficiency by implementation of our proposed sys-
tem etc. as future work.

6. REFERENCES

[1] Cryptographically Protected Objects, EcolePolytechnique
Fèd̀erale de Lausanne, Switzerland, 1997.

[2] Time Limited Blackbox Security: Protecting Mobile Agents
From Malicious Hosts, Springer LNCS 1419, pp. 92-113,
1998.

[3] Protecting Mobile Agents Against Malicious Hosts, Springer
LNCS 1419, pp 44-60, 1998.

[4] Cryptographic Traces for Mobile Agents, Springer LNCS
1419, pp 137-158, 1998.

[5] Secure Recording of Itineraries through Co-operating Agents,
4th Workshop on Mobile Object Systems, 1998.


