
PROPOSAL AND EVALUATION OF OBFUSCATION SCHEME FOR JAVA SOURCE CODES
BY PARTIAL DESTRUCTION OF ENCAPSULATION

Kazuhide FUKUSHIMA

Kyushu University
Graduate School of Information Science

and Electrical Engineering
6-10-1 Hakozaki, Higashi-ku,

Fukuoka, 812-8581 Japan
fukusima@itslab.csce.kyushu-u.ac.jp

Toshihiro TABATA, Kouichi SAKURAI

Kyushu University
Faculty of Information Science

and Electrical Engineering
6-10-1 Hakozaki, Higashi-ku,

Fukuoka, 812-8581 Japan
{tabata,sakurai}@csce.kyushu-u.ac.jp

ABSTRACT

Recently, Java has been spread widely. However, Java has a
problem that an attacker can reconstruct Java source codes
from Java classfiles. Therefore many techniques for protect-
ing Java software have been proposed, but, quantitive secu-
rity evaluations are not fully given. This paper proposes
an obfuscation scheme for Java source codes by destructing
the encapsulation. In addition, we propose an evaluation
scheme on the number of accesses to the fields and the meth-
ods of the other classes. We try to realize a tamper-resistant
software with the certain quantitive basis of security using
our evaluation.　

1. INTRODUCTION
1.1. Background

Recently, Java has spread widely. Java is an object-oriented
language released by Sun Microsystems in 1995. Java source
codes are compiled to object files called Java classfile. The
classfiles are executed on the executer called Java Virtual
Machine (JVM). The same classfiles can run on different
platforms because the JVM for each platform is prepared.
Java programs can run on portable phones and small infor-
mation terminals such as Personal Digital Assistants (PDA)
as well as PCs and Workstations.

On the other hand, Java classfiles contain information
such as name of class, name of super class and names of
methods and fields defined in the class file[2]. Moreover,
the description of class file can be divided into description
of field and methods. Therefore, Java classfiles have high
readability. As the result, an attacker can obtain Java source
codes easily by decompiling Java classfiles. He can crib
secret data and key algorithms by his reverse engineering of
the obtained source code.

Software developers are frightened by the prospect of a
competitor being able to extract secret data and key algo-

rithm in order to incorporate them into their own programs.
The competitor may intercept their commercial edge by cut-
ting development time and cost. To make matters worse, it
is difficult to detect and pursue the injustice.

1.2. Our contribution

We propose an obfuscation scheme for Java source codes
that focuses on properties of object-oriented languages. We
transfer local variables and compound statements in an arbi-
trary method of a class to the other classes. This obfuscation
scheme can make a Java source code difficult to read by de-
struction the encapsulation structure of Java. Moreover, we
proposed an evaluation scheme for our proposed obfusca-
tion scheme. The evaluation scheme is based on the number
of accesses to fields and methods of the other classes. In ad-
dition, we investigate the correlation between breaking time
of obfuscated programs and theEffects of obfuscations pro-
vided by our evaluation. Our result shows the breaking time
grows more rapidly than theEffects of obfuscations. The
property is desirable for realization of tamper-proof soft-
ware with the certain quantitive basis of security.

2. RELATED WORKS

Many techniques for protecting software have been proposed.
In this section, we explain encryption, server-side execu-
tion, and obfuscation.

We can protect programs by encrypting them. However,
encrypted programs can not run as they are. Therefore, they
must be decrypted before execution or be executed on the
executor with decoder.

In server-side execution, a program can be broken into a
private part, which executes on the server, and a public part,
which runs locally on the user’s site[3]. The private part of
the program can be protected entirely, because an attacker

can not get it. However, server-side execution requires com-
munication between the server and clients.

Obfuscation makes software difficult to analysis, while
its functionality are preserved. Monden et al. proposed
an obfuscation scheme for C programs contain loops[4].
Collberg et al. proposed an obfuscation scheme for Java
programs by injecting dummy codes and complicating data
structures and control flows[5]. Few obfuscation schemes
have basis of security. Wang et al. proposed an obfusca-
tion scheme based on the fact that the problem of determin-
ing precise indirect branch target addresses is NP-hard[6].
They used global arrays and pointers of C programs in their
scheme. Ogiso et al. proposed an obfuscation scheme based
on the difficulty of interprocedual analysis of C programs.
They showed that the problem of determining the address
a function pointer points to is NP-hard[7]. Sakabe et al.
proposed an obfuscation scheme for Java programs using
properties of object-oriented languages. Their schemes is
based on difficulty of Java programs containing interfaces
and method overloads[8].

3. PROPOSED OBFUSCATION SCHEME

3.1. Our view

This paper proposes an obfuscation scheme for Java source
codes focused on properties object-oriented languages. Data
structures (fields) and operations to them (methods) of a
Java classes are intimately tied together. We call it encap-
sulation. We can operate private fields only by using public
methods from external classes. As the result, each classfile
has high independency. We obfuscate Java source codes by
destruction of the encapsulation.

Static variables and static methods in Java belong to a
class itself instead of a specific object of the class. There-
fore, the variables and methods can be accessed from any
classes in form of “classname. identifier”. In our proposed
obfuscation scheme, local variables and compound state-
ments are transferred to the other classes as static fields and
static methods. In this situation, an attacker has to know
structures of all classes when he analyzes a Java program
by reverse engineering. It means that the Java source code
become difficult to analyze.

3.2. Transference of local variables in a method

This technique is applicable to an arbitrary methodmof an
arbitrary classC.

(1) Choose an arbitrary local variablev , which is trans-
ferred to the other classes, from methodm.

(2) Choose an arbitrary classC’ where we place the vari-
able. And, declare the variablev as a new static field
in the classC’ .

�����
��

��	
�
��

�
���
������

�

�����
��

��	
�
��

�
���
�
�����

�
�
����

����

�

�����������
�����������

������
	� �

!"
����"#$!"
����"#%!"
����"#$

Fig. 1. Transference of local variables

(3) Correct the statements which access the local variable
chosenv in methodm. That is, static fields declared
in (2) is accessed from methodmin form of “C’.v ”.

(4) Finally, delete the variable declaration of local vari-
ablev in methodm.

Fig.1 shows an example of obfuscation by transferring
of local variables. In this example, two local variablesa
andb in classA are transferred to classB. New static fields
a andb are declared in classB.

3.3. Transference of compound statements in a method

This technique is applicable to an arbitrary methodmof an
arbitrary classC.

(1) Choose an arbitrary compound statements(s0, s1,
..., sn) , which are transferred to the other classes,
from the statements set ofmexcept assignment state-
ments for local primitive variables.

(2) Choose an arbitrary classC’ where we place the com-
pound statements. And, declare the a new static method
m’ consist of compound statements(s0, s1, ...,
sn) .

(3) Describe call to static methodm’ , in the spot in front
of compound statements(s0, s1, ..., sn) in
m. Static methodm’ is called in form of ”C’.m’
(arguments)”.

(4) Correct the access modifications of all fields, accessed
from static methodm’ , topublic, so thatmcan access
to these fields.

(5) Finally, delete compound statements(s0,s1,...,
sn) in methodm.

In Java, primitive arguments are called by value[1]. There-
fore, if assignment statements for local primitive variables
of methodmare transferred to the other classes, the vari-
ables can not be changed from static methodm’ . This is
why assignment statements for local primitive variables are
excluded in (1).

�����
��

�
�
	
�

�
	

��

�
��

�����
�

�
	
���	

���
�
	��

�
	�
��

�
	
���	

���

�

�

���� �!"
" �

#$ ��%����
��

&
�
'(&�

')�*
&
�+(

&
�+
,�*

�

�

-�
!!. �/0 -�
!!. �/--�
!!. �/0

�����
��

�
�
	
�

�
	

��

�
	
���	

���
�
	��

�
	�
��

�
	
���	

���

�
�

�

1�.�!�
" $2

Fig. 2. Transference of compound statements

Fig.2 shows the example of obfuscation by transferring
of compound statements. In this example, two statements
B.b=B.b+y andB.c=B.c*x in classA are transferred to
classC. A new static methodm2 is declared in class C and
method call tom2is described in class A.

3.4. Consideration

Monden et al. claim that a obfuscationτ should be satisfy
the following three properties[4]. We confirm that our ob-
fuscation scheme satisfies the properties.

• The output of obfuscated programτ(P) is the same as
that of source program P.

• The breaking time ofτ(P) is longer than that of P.

• The execution time ofτ(P) is not much longer than
that of P.

3.4.1. Equivalence of output

Even if local variables in a method are transferred to another
class as static fields, the method can access the variables by
specifying the class name and the field name. Moreover,
even if compound statements are transferred to another class
as static methods, the procedure does not change. The dif-
ference of the scope of variables can solved by passing ar-
guments. Therefore, the equivalence of the programs are
preserved.

3.4.2. Breaking time of program

Java class is generally designed to realize a specific func-
tionality. The variables and statements for realizing the func-
tionality are defined as a class. We have only to analyze
each class file to understand the program. On the other
hand, encapsulation structure of obfuscated program is de-
stroyed. As the result, it is impossible to analyze each class-
file individually. That is, in order to analyze a classfile,
we must investigate the other classes contains static fields
and static methods accessed from the class. Therefore, the
breaking time of obfuscated program is longer than that of
the source program.

3.4.3. Execution time

Even if local variables in a method are transferred to another
class as static fields, the access speed hardly changes. We
confirm the fact by measuring access time to local variables
and static field in Java program. Moreover, even if com-
pound statements are transferred to another class as static
fields, the access speed hardly changes. Because the pro-
cedure of the compound statements does not change unless
dummy codes are injected or control flows are complicated.

4. PROPOSED EVALUATION SCHEME
4.1. Proposed evaluation scheme

We give an evaluation scheme for our proposed obfuscation
scheme. The evaluation scheme is based on the number of
accesses to fields and methods of the other classes.e(C)
represents the complexity of the class C. e(C) is defined as
the total number of fields and methods declared in the other
classes accessed from C.E(P) represents the complexity of
the Java program P.E(P) is defined as the total complexity
of each class declared in P. That is,

E(P) =
∑

C∈P

e(C).

Finally, Effect(τ) represents the effectiveness of the obfus-
cationτ . Effect(τ) is defined as difference the complexity
of the obfuscated program and the complexity of the origi-
nal program. That is,

Effect(τ) = E(τ(P))− E(P).

4.2. Experiment results
4.2.1. Procedure of experiment
We investigate the correlation between each subject’s break-
ing time of obfuscated programs and theEffects of them in
order to confirm that our evaluation scheme is suitable. The
procedure of the experiment is as follows.

(1) We make a source code P0 of the program that outputs
first 20 terms of the Fibonacci sequence.

(2) We make source codes P1, P2, P3, P4, and P5. These
source codes are obtained by obfuscating the P0.Ta-
ble.1 shows the detail of each source code. The out-
put of these program is same, but, theEffects of them
are different respectively.

(3) The six sources codes (P0 to P5) are passed to five
subjects. The subjects break the programs. We regard
the breaking of a program is completed when the sub-
ject understands the execution path, operations and
data flows along the path of the program. The sub-
jects records the breaking times of source codes P0 to
P5.

Table 1. The properties of source codes

P0 P1 P2 P3 P4 P5
Size (B) 369 563 924 959 1428 1939
Lines 26 39 48 54 78 105

Methods 2 4 4 6 10 19
Classes 2 3 4 5 5 6

Complexity 2 4 19 29 34 45
Effect 0 2 17 27 32 43

Execution time

(10−6 s)
539 664 673 747 817 831

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45

tim
e[

se
cs

]

effect

Fig. 3. Correlation between each subject’s breaking time of
obfuscated programs and theEffects of obfuscations

4.2.2. Result of experiment

Fig.3 shows the correlation between the breaking times and
the Effects of the obfuscations. The breaking times and
the Effects of the obfuscations have a positive correlation,
though there are individual differences. Next,Fig.4 shows
the correlation between the average of five subjects’ break-
ing time, and theEffects of the obfuscation. The breaking
time grows more rapidly than theEffects of obfuscations.

4.3. Consideration

We can see that the breaking time grows more rapidly than
Effects. Therefore, we can lengthen the breaking time suffi-
ciently by applying our obfuscation scheme repeatedly. The
property is desirable for realization of tamper-proof soft-
ware.

5. CONCLUSION

We proposed an obfuscation scheme for Java source codes.
We could obfuscate Java source codes by transferring local
variables and compound statements in an arbitrary method
of a class file to another class file. And we proposed an
evaluation scheme for our obfuscation scheme. We inves-
tigate the correlation between each subject’s breaking time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 5 10 15 20 25 30 35 40 45

tim
e[

se
cs

]

effect

Fig. 4. Correlation between the average of five subjects’
breaking time, and theEffects of obfuscations

of obfuscated programs and theEffects of them. As the re-
sult, the breaking time grows more rapidly than theEffects
of obfuscations.

Our future work is improving our evalustion scheme.

6. REFERENCES

[1] J. Gosling, B. Joy, G. Steele, and Gilad Bracha,The Java
Language Specification Second Edition, Pearson Education
Company, 2000.

[2] T .Lindholm and F.Yellin”, The Java Virtual Machine Speci-
fication, Pearson Education Company, 1999.

[3] D. J. Albert and S. P. Morse, “Combating software piracy by
encryption and key management,”IEEE Computer, pp. 68–
73, 1984.

[4] A. Monden, Y. Takeda, and K. Torii, “Methods for scrambling
programs containing loops,”Transaction of IEICE, vol. J80-
D-I, no. 7, pp. 644–652, 1997.

[5] C.Collberg, C.Thomborson, and D.Low, “A taxonomy of
obfuscating transformations,” Technical Report of Deptart-
ment of Computer Science 148, University of Auckland, New
Zealand, 1997.

[6] J.Knight C.Wang, J.Hill and J.Davidson, “Software tamper
resistance: obfuscating static analysis of programs,” Techni-
cal report sc-2000-12, Department of Computer Science, New
Zealand, 2000.

[7] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, “A new ap-
proach of software obfuscation based on the difficulty of inter-
procedural analysis,”IEICE Transactions on Fundamentals,
vol. E86-A, no. 1, pp. 176–186, 2003.

[8] Y. Sakabe, M. Soshi, and A. Miyaji, “Software obfusca-
tion for object oriented languages,” Technical report of ieice
(ISEC02-6), pp. 38–43, 2002.

