
EVALUATION OF COMMUNICATION BANDWIDTH

CONTROL MECHANISM BY REGULATING

PROGRAM EXECUTION SPEED

Toshihiro TABATA, Yoshinari NOMURA
Faculty of Information Science and Electrical Engineering

Kyushu University
Hakozaki 6-10-1, Higashi-ku
Fukuoka 812-8581, Japan

{tabata, nom}@csce.kyushu-u.ac.jp

Hideo TANIGUCHI
Faculty of Engineering
Okayama University
Tsushimanaka 3-1-1

Okayama 700-8530, Japan
tani@it.okayama-u.ac.jp

ABSTRACT
With the spread of the Internet, services that com-

municate to other services are increasing. Multime-
dia applications such as video on demand also ask
for network Quality of Service (QoS). Thus, operat-
ing systems have to guarantee the allocation of com-
puter resources to services. The computer resources
are CPU, disk, network devices and so on. We sup-
pose that the communications have to be controlled
well, because services using network are increasing.
This paper proposes the communication bandwidth
control mechanism by regulating program execution
speed. Our proposed mechanism is based on the pro-
cess schedule method for regulating program execution
speed. In the process schedule method, the operating
system reserves the amount of CPU time of target pro-
cesses and guarantees the allocation of CPU time on
a sending host. Our proposed mechanism can guaran-
tee a required data rate of target processes by allocat-
ing enough CPU time for communications. Because
operating systems manage computer resources, they
guarantee the allocation of CPU time if the process
schedule method is implemented. The allocation of
CPU time is not almost affected by non-target pro-
cesses. This paper introduces the process schedule
method and the implementation of it. This paper also
shows how to control the communication bandwidth
of target processes. Then this paper describes about
an evaluation of our proposed mechanism.

KEY WORDS
Process Scheduling, Operating System, Communica-
tion, Program Execution

1 Introduction

With the spread of the Internet, services that commu-
nicate to other services are increasing. Moreover, the
services compete with themselves to get computer re-
sources when the services coexist on a single computer
simultaneously. Therefore, operating systems should

guarantee the allocation of computer resources. The
computer resources are CPU, disk, network devices
and so on. We suppose that the communications have
to be controlled well, because services using network
are increasing.

Multimedia applications such as video on demand
require much computer resources. Especially the allo-
cation of CPU time is important for them to provide
good services. However it is difficult to guarantee the
allocation of CPU time by using conventional time-
sharing scheduling mechanisms.

We aim at controlling communications in ac-
cordance with the characteristic of service contents.
There are three viewpoints for the realization of the
communication control.

(1) Guarantee of communication bandwidth
A data delivery service with deadline and a video
on demand service with real-time request the
guarantee of communication bandwidth. The
guarantee of the data delivery service is the guar-
antee of the communication time. This is macro-
cosmic control. On the other hand, the guarantee
of the video on demand service is the guarantee
of the packet arrival interval. This demands the
control of each packet. This is microscopic con-
trol.

(2) Control of the interference of communica-
tion control to the other services
It is not desirable that the communication control
interferes with other uncontrolled services. The
interference of the communication control should
be controlled. Therefore, it is important to decide
the degree of the guarantee of the communication
bandwidth. That is the guarantee of other ser-
vices.

(3) Best effort with the guarantee of commu-
nication
A best effort network can not guarantee the com-
munication bandwidth of services. It is a signif-

icant problem that the communication looks to
have halted, when there are no unused computer
resources for a target service. Therefore it is nec-
essary to guarantee the minimum performance for
maintaining QoS. Besides, it is also necessary for
services to be able to use resources more than the
amount of guaranteed resources, if there are un-
used resources. We call it “best effort with the
guarantee of communication”.

Communication systems which satisfy above the
viewpoints can be classified into three methods.

(1) Communication protocols
This method controls the communication flows at
the level of communication protocols. An example
of this method is resources reservation protocol.

(2) Operating systems
Operating systems decide a sending/receiving pri-
ority of packets to meet a request of services. An
example of this method is a priority scheduling.

(3) Application programs
Service application programs control communica-
tions. This method cannot control communica-
tions well in case some services communicate si-
multaneously.

This paper proposes the communication band-
width control mechanism by regulating program ex-
ecution speed. We implemented the process schedule
method that can regulate program execution speed.
As the result, the operating system can control com-
munication bandwidth of target processes. This paper
describes the method and the implementation of it.
This paper also shows how to control the communica-
tion bandwidth of target processes. Then this paper
describes about an evaluation of our proposed mecha-
nism.

2 Method for Regulating Program Ex-
ecution Speed

2.1 Basic Mechanism

2.1.1 Time-slot and Time-block

A unit of allocation of CPU time is named “time-slot”.
CPU time is divided into time-slots. A chunk of time-
slots is named “time-block”. Figure 1 shows the rela-
tion between time-slots and time-blocks. A program
is executed for allocated time-slots in a time-block in
order to regulate program execution speed. In figure
1, one time-block is divided in to 6 time-slots, two of
which are allocated to a process in the time-block. The
process is regulated to 33% of bare processor perfor-
mance. The program execution speed is the ratio of

time-block

time-slot

Figure 1. time-slot and time-block.

Table 1. System-call form.

Format
set power(pid, n)
Function
Pid is process identifier. If pid equals 0, pid is
identified with a current running process. When n
is from 1 to 100, the process runs with the n% of
bare processor performance. When n is from -255
to 0, n is priority.

number of allocated time-slots to the number of time-
slots in a time-block, where the processor bare perfor-
mance is defined as 100%.

2.1.2 Methods for Allocating Time-
slots

The degree of regulated program execution speed can
be evaluated by the execution time of a program. How-
ever the execution time is not enough to evaluate it,
because the execution time is calculated by the start
time of the execution and the termination time of the
execution. If the behavior of the processing is not
smooth, the process can not provide a good QoS. It
is necessary to allocate time-slots to a process cycli-
cally in order to execute a program smoothly.

We proposed the new cyclic like assignment
method[1]. In case n time-slots are allocated, (i-th al-
located time-slot position) = (the total number of time-
slots in a time-block) * (i–1) / n. The method can-
not always allocate time-slots cyclically, but the allo-
cation of the time-slots is close to the cyclic allocation.
Therefore the method can provide the best uniformity
of processing in our proposed methods.

2.1.3 Strategy of Allocating Time-slots

Time-slots are allocated when a non-regulated process
is set a program execution speed. Time-slots are also
allocated when a program execution speed of a reg-
ulated process is changed. The format of a system-
call for setting program execution speed or priority is
shown in table 1. The system-call set power demands
a process identifier. It also demands performance or
priority.

2.1.4 Process Dispatch and Coexisted
Process Scheduling Mechanisms

Two kinds of processes coexist in our proposed system.
One is regulated process. The other is non-regulated
process. In order to schedule these processes, two
kinds of scheduling mechanisms (the scheduling mech-
anism for regulating program execution speed, and a
priority scheduling mechanism) coexist. When a reg-
ulated process is executed, the regulated process is
scheduled by allocated time-slot positions in a time-
block. When a non-regulated process is executed, the
non-regulated process is scheduled by priority. A reg-
ulated process has a value of the degree of perfor-
mance adjustment. The degree of performance adjust-
ment is the ratio (%) of bare processor performance.
The priority scheduling mechanism for non-regulated
processes is similar to time-sharing scheduling mecha-
nisms.

The scheduler is called by timer interrupts on the
boundary of time-slots except for preemption. The
scheduling mechanism for regulating program execu-
tion speed runs first in two scheduling mechanisms.
The scheduler checks whether the next time-slot is al-
located to a regulated process. If the next time-slot is
allocated to a regulated process, the scheduler checks
the state of the regulated process. When the state of
regulated process is READY or RUN, the regulated
process starts to run or continues to run. If the state
of the regulated process is WAIT or the next time-
slot is not allocated to any processes, a non-regulated
process is selected to run by priority. When the state
of a running regulated process becomes WAIT before
it uses up the current time-slot, a non-regulated pro-
cess is selected by priority for using the remains of the
current time-slot.

3 Communication Bandwidth Control
Mechanism by Regulating Program
Execution Speed

3.1 Requirement

We aim at developing the mechanism that can control
communication bandwidth of programs freely. We use
the process schedule method that is described in the
previous chapter.

There are two requirements for communication
bandwidth control.

(1) Communication bandwidth can be regulated in
accordance with the requested performance.

(2) The arrival intervals of each packet can be regu-
lated.

We did experiments to evaluate whether our pro-
posed mechanism fills the requests. We report the re-

＜sender＞ ＜receiver＞

Ethernet100Mbps

�CPU: Celeron 500MHz�OS: Tender�NIC: DEC DE500-BA
�CPU: Celeron 1GHz�OS: Linux 2.4.19�NIC: Intel Ether Express Pro 100

Figure 2. Environment of experiments.

Table 2. Shell command form for setting performance.

Format
exec <arg1> <arg2>

Function
“Exec” is a shell command name. “Arg1” is a pro-
cessor performance. The performance is an integer
from -255 to 100. When the integer is larger than
0, the integer represents the n% of bare processor
performance. When the integer is smaller than 1,
the integer represents priority. “Arg2” is a com-
mand name that is regulated.

sults of them.

3.2 Environment of Experiment

We measure communication time and the arrival in-
tervals of each packet. The measurement was per-
formed on two PC and 100Mbps Ethernet switching
hub. A sending program is executed on the com-
puter (Processor: Celeron 500MHz, OS: Tender[2],
NIC: DEC DE500-BA). The program sends 1MB data
by send system-call. A receiving program is executed
on the computer (Processor: Celeron 1GHz, OS: Linux
2.4.19, NIC: Intel Ether Express Pro 100). The pro-
gram receives 1MB data by recv system-call. A reg-
ulated performance (%) and the sending data size of
a send system-call were changed on the sending com-
puter. The receiving data size of recv system-call was
changed on the receiving computer. The arrival time
of each packet was measured on the Ethernet driver
of the receiving computer. We implemented a func-
tion that can record the receipt time of each packet in
the driver. The length of a time-slot is 1 msec and the
length of a time-block is 1 sec in the sending computer.

We implemented a shell command that can set
the performance of a regulated process. The format
of the shell command is shown in table 2. Figure 3

On the sending computer:
% exec 10 send program 2048 512

On the receiving computer:
% receive program 2048 512

Figure 3. How to execute a program on the shell.

05101520253035404550

0 20 40 60 80 100regulated performance （％）communicatio
n bandwidth （
Mbps） data size of system-call: 1024B(higher performance PC)data size of system-call: 1024B(lower performance PC)data size of system-call: 2048B(higher performance PC)

Figure 4. Regulated communication bandwidth.

shows that how to execute a send program and a re-
ceive program. The sender program is regulated. In
the figure 3, the performance of send program is 10%
of bare processor performance. The receive program
is set a priority. The first argument is the send-
ing/receiving data size of the system-call. The second
argument is the number of sending/receiving data.

3.3 Result of Experiment

3.3.1 Communication Bandwidth Con-
trol

In addition to the described environment, the experi-
ment is performed on the lower performance computer
(Sender: Pentium 133MHz, OS: Tender, NIC: DEC
DE500, Receiver: Pentium III 750MHz, OS: BSD/OS
3.1, NIC: DEC DE500). The result of them is shown
in Figure 4. Figure 4 shows that our proposed mech-
anism can regulate the communication bandwidth on
the higher performance computer irrespective of the
sending and receiving data size. On the other hand,
figure 4 shows that our proposed mechanism cannot
regulate the communication bandwidth on the lower
performance computer well, because the processor per-
formance of the sending computer is too low. We
can guess that the computer cannot utilize the per-
formance of the NIC sufficiently.

3.3.2 Packet arrival interval

The frequency distribution of the arrival interval of
each packet is shown in Figure 5 to Figure 12. The

regulated performance 100％
01020304050607080

0 500 1000 1500 2000packet arrival interval （μs）ratio of numbe
r of packets （％）

Figure 5. Packet arrival interval (data size of system-
call: 1024B). regulated performance 100％

010203040506070
0 500 1000 1500 2000packet arrival interval （μs）ratio of numbe

r of packets （％）

Figure 6. Packet arrival interval (data size of system-
call: 2048B).

figures show the things mentioned below.

(1) In case the size of sending and receiving data
is 2048B, 20% of the packet arrival interval is
less than 100 microseconds. On the other hand,
in case the size of sending and receiving data is
1024B, only 2% of the packet arrival interval is
less than 100 microseconds.

(2) There are packets those arrival intervals are more
than 400 microseconds in both of cases. Besides,
the distribution of packet arrival interval of each
case is different from the other case.

(3) In case the regulated performance is lower than
100%, the packet arrival interval of some packets
becomes long.

The items described above are discussed below.
We explain the item (1) by using table 3. The table
3 shows the number of packets in case regulated per-
formance is 100%. The packets are divided in case the
size of sending and receiving data is 2048B. As the
result, 504 packets were divided to size that is more
than 400B and is less than 500B. The arrival interval
of these packets is short, because the size is small.

Table 3. Number of packets (regulated performance 100%).

size of a packet (Ethernet frame) (N * 100B)
Size of data Arrival interval 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1024B 0 — 100µs 0 2 0 0 3 0 2 1 0 0 29 0 0 0 0 0
1024B 100 — 200µs 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1595
2048B 0 — 100µs 0 3 0 0 504 0 3 0 0 0 0 0 0 0 0 0
2048B 100 — 200µs 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1532

regulated performance 80％

01020304050607080

0 500 1000 1500 2000packet arrival interval （μs）
ratio of num
ber of packets （％

）

Figure 7. Packet arrival interval (data size of system-
call: unit 1024B).

regulated performance 80％

010203040506070

0 500 1000 1500 2000packet arrival interval （μs）
ratio of num
ber of packets （％

）

Figure 8. Packet arrival interval (data size of system-
call: 2048B).

We explain the item (2). The processing of send-
ing packets on the NIC is the repetition of sending a
packet and buffering the next sending data. Several
packets are sent at a time. Thus the arrival of packets
those are sent after the buffering delays.

We explain the item (3). The cause of item
(3) is the existence of non-allocated time-slots. Non-
allocated time-slots exists in case regulated perfor-
mance is below 100%. While non-allocated time-slots,
the sending program is suspended. For example, time-
slots are allocated on every other time-slot in 50% of
regulated performance. The program is suspended on
every 1 millisecond. As the result, the packet arrival
time of some packet delays 1 millisecond. Two or more
sequential non-allocated time-slots exist in less than

regulated performance 50％

01020304050607080

0 500 1000 1500 2000packet arrival interval （μs）
ratio of num
ber of packets （％

）

Figure 9. Packet arrival interval (data size of system-
call: 1024B).

regulated performance 50％

010203040506070

0 500 1000 1500 2000packet arrival interval （μs）
ratio of num
ber of packets

Figure 10. Packet arrival interval (data size of system-
call: 2048B).

50% of regulated performance. In this case, the ar-
rival time of some packets delays n millisecond. The n
is the number of sequential non-allocated time-slots.

Figure 7 and figure 8 show that the arrival time
of the certain proportion of the packets delayed. The
proportion depends on the probability of the alloca-
tion of the next time-slot to a regulated process. In
the figure 7, the probability of allocation of the next
time-slot is 1/4, because a non-allocated time-slot ex-
ists allocated every four time-slot. Thus, 3/4 of pack-
ets whose arrival time is more than 400 microseconds
in case regulated performance is 100% delay 1 millisec-
ond.

It follows from what has been described thus far
that the arrival time of the packets of some packets

regulated performance (20％)

01020304050607080

0 500 1000 1500 2000 2500 3000 3500 4000 4500packet arrival interval （μs）ratio of num
ber of pack
ets

（％）

Figure 11. Packet arrival interval (data size of system-
call: 1024B).

regulated performance (20％)

010203040506070

0 500 1000 1500 2000 2500 3000 3500 4000 4500packet arrival interval （μs）ratio of num
ber of pack
ets

（％）

Figure 12. Packet arrival interval (data size of system-
call: 2048B).

delays in proportion to the number of sequential non-
allocated time-slots. The proportion of delayed pack-
ets depends on the probability of allocation of the next
time-slot to a regulated process.

4 Related Work

Resource reservation protocol (RSVP) is one of ap-
proaches which use a reservation protocol. RSVP can
guarantee QoS of data streams by using resource reser-
vation. Jeong et al.[3] proposed an adaptive method
of combining error resilient video packetization, FFC,
and QoS controlled networks such as IntServ and Diff-
Serv.

Tobe et al.[4] proposed software traffic manage-
ment architecture for multimedia flows over a real-time
microkernel. This architecture defines interface be-
tween network driver and user thread. It realizes ad-
mission control and the regulation of the rate of traffic
flows. Our mechanism manages the CPU time using
process scheduler on a sending host.

In order to guarantee QoS and real-time on op-
erating systems, several studies have been made on
process scheduling mechanisms. A feedback-driven ap-

proach is used for real-time application[5]. The pro-
portional scheduling[6] presents the relative execution
rates of computation as degree of CPU allocation. Our
proposed mechanism presents the rate to bare proces-
sor performance as the degree of the allocation of CPU
time.

5 Conclusion

We proposed the communication bandwidth control
mechanism by regulating program execution speed.
speed. The proposed mechanism guarantees the allo-
cation of requested CPU time to target processes. The
proposed mechanism guarantees required communica-
tion rates of target processes by allocating requested
CPU time. We explained the evaluation of it. The re-
sults of it show that the our proposed mechanism can
regulate communication bandwidth in accordance with
regulated performance. The results also show that the
arrival time of the packets is delayed in proportion
to the number of sequential non-allocated time-slots.
The results show that the proportion of delayed pack-
ets depends on the probability of allocation of the next
time-slot to a regulated process. As a future work,
we will analyze the relation between regulated perfor-
mance and packet arrival time in detail.

References

[1] T. Tabata, H. Taniguchi, and K. Ushijima. Im-
plementation and evaluation of multiple processes
control mechanism for regulating program execu-
tion speed. In Proceedings of International Sympo-
sium on Principles of Software Evolution (ISPSE
2000), pages 315–319, 2000.

[2] H. Taniguchi, Y. Aoki, M. Goto, D. Murakami, and
T. Tabata. Tender operating system based on
mechanism of resource independence. IPSJ Jour-
nal, 41(12):3363–3374, 2000 (in Japanese).

[3] J. Jeong, J. Shin, and D. Y. Suh. Quality enhance-
ment of video services over qos controlled networks.
IEICE Trans. commun., E86-B(2):562–571, 2003.

[4] Y. Tobe, Y. Tamura, and H. Tokuda. Software traf-
fic management architecture for multimedia flows
over a real-time microkernel. IEICE Trans. com-
mun., E82-B(12):2116–2125, 1999.

[5] D. C. Steere, A. Goel, J. Gruenberg, and D. Mc-
Namee. A feedback-driven proportion allocator for
real-rate scheduling. In OSDI’99: USENIX Asso-
ciation 3rd Symposium, pages 145–157, 1999.

[6] C. A. Waldspurger and W. E. Weihl. Lottery
scheduling: Flexible proportional-share resource
management. In OSDI’94: USENIX Association
1st Symposium, pages 1–11, 1994.

