
ON THE SECURITY OF SELINUX WITH A SIMPLIFIED POLICY

Katsuya Sueyasu

Department of Electrical Engineering and Computer Science,
Faculty of Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku,
Fukuoka 812-8581, Japan

email: sueyasu@itslab.csce.kyushu-u.ac.jp

Toshihiro Tabata and Kouichi Sakurai

Faculty of Information Science and
Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku,
Fukuoka 812-8581, Japan

email:{tabata, sakurai}@csce.kyushu-u.ac.jp

ABSTRACT
Security-Enhanced Linux (SELinux) is a secure operating
system. SELinux implements some features in order to per-
form strong access control. However, the configuration of
SELinux access control becomes very complex. Such com-
plexity may cause misconfiguration which can harm the
strong access control. SELinux Policy Editor is a config-
uration tool for SELinux. It is developed in order to re-
duce the complexity and the risk of misconfiguration. As
a part of its support of configuration, this tool simplifies
the configuration of SELinux by integrating configuration
items for complicated access control policy of SELinux.
Although we can originally define and use macros which
integrate permissions in SELinux access control policy, the
integrated permissions of SELinux Policy Editor and the
macros differ fundamentally in whether the use of them
is mandatory or discretionary. In this paper, we examine
effects of the simplification by SELinux Policy Editor on
an example access control policy and evaluate the security
of the access control based on the simplified policy about
Apache, a web server software.

KEY WORDS
Security for Operating Systems, Access Control, Security-
Enhanced Linux, SELinux Policy Editor

1 Introduction

Since computer networks are growing rapidly, networked
computers today are at higher risk of attack through net-
work. For example, a malicious person may hack web
pages or release computer worms which perform undesir-
able activities on victim machines. Because an operating
system is the basis of a system, we need operating system-
level security in order to prevent damage from these attacks
fundamentally.

Security-Enhanced Linux (SELinux) is a Linux-based op-
erating system developed by National Security Agency
(NSA) [1] [2]. SELinux supports mandatory access con-
trol (MAC), type enforcement (TE), and role based access
control (RBAC). These access control models can mini-
mize permissions granted to each subject, so that activi-
ties of an attacker who intruded into a SELinux system can

be strongly restricted. However, because of being imple-
mented these models, the configuration of SELinux access
control becomes very complex [3]. Such complexity may
cause misconfiguration which can harm the strong access
control.

To reduce this complexity, a configuration tool called
SELinux Policy Editor is developed by Hitachi Software
[4]. As a part of its support of configuration, this tool sim-
plifies the configuration of SELinux by integrating some
configuration items used in the SELinux access control pol-
icy [5]. For example, there are seventeen permissions for
file access in SELinux. On the other hand, SELinux Policy
Editor integrates them into four permissions. For example,
“write,” “append,” and “create” are permissions defined in
SELinux but they are all integrated into a “write” permis-
sion by SELinux Policy Editor.

In this paper, we start by comparing this simplification with
a simplification by macros. We can use macros originally
in configuring a SELinux policy and they are frequently
used in the SELinux example policy indeed. NSA provides
the example policy for policy administrators as a sample
of configuration of major applications. Although users can
define their own macros, we consider macros defined in the
example policy in comparing the two simplifications.

Then, we examine effects of the simplification by SELinux
Policy Editor on a file access control policy and evaluate
the security of file access control based on the policy. Our
evaluation is performed on the example policy for Apache,
because it is a popular web server program used around
the world and most actual SELinux policies are thought to
be based on the example policy. Our aim is to point out
problems that SELinux Policy Editor can cause in actual
(or nearly actual) cases.

As related works, Tresys Technology also has been de-
veloping tools for SELinux [6]. Tresys develops not
only a configuring tool but tools for policy analyzing or
user management. These tools help policy administrators
understand the SELinux policy and perform their tasks
(e.g., adding a new user). Further, Jaeger et al. presented
an approach for analyzing the integrity protection in the

SELinux example policy [7].

The rest of this paper is organized as follows. In section 2,
we explain the function of SELinux. In section 3, we ex-
plain the function of SELinux Policy Editor. In section 4,
we examine effects of the simplification by SELinux Policy
Editor. In section 5, we evaluate the security of file access
control based on the policy. Then, we conclude in section
6.

2 Security-Enhanced Linux

This chapter explains briefly the function of SELinux and
the mechanism in which it is implemented.

2.1 Function of SELinux

SELinux implements strong access control. The first
characteristic of the control is mandatory access control
(MAC). In discretionary access control (DAC), a superuser
(like “root” in Linux OS) exists and all access control will
be disregarded. However, in MAC, even a superuser will
be set as the object of access control. Moreover, although
the owner of a file can determine the access authority over
the file freely in DAC, the decision of access authority can
be made only by the user allowed to do so in MAC. By car-
rying out centralized management of access authority, we
can provide consistent access control.

The second characteristic is Type Enforcement (TE). Since
we can define access authority for each process in TE, it is
possible to minimize access authority granted to a process.

The third characteristic is Role-Based Access Control
(RBAC). In Linux OS, a superuser (root) holds all the au-
thority of important processing on a system management.
For this reason, when performing an important process-
ing as a superuser, a mistake can lead to destruction of
an important file which is unrelated to the processing. In
RBAC, since superuser’s authority can be distributed to two
or more general users, the damage produced by mistakes
can be suppressed to the minimum.

These characteristics restrict activities of an attacker by dis-
tributing authority to users and removing excessive author-
ity from each process. If a process is granted only neces-
sary authority, an attacker who takes control of the process
cannot deal a big blow to the target system.

2.2 Mechanism of SELinux

The access control mechanism of SELinux is made of
adding the access control mechanism which has the func-
tion explained above in the outside of the access control
mechanism of Linux OS. That is, we can make an access

only after obtaining access permissions from both of mech-
anisms. We explain the additional access control mecha-
nism here.

As shown in Figure 1, the mechanism assigns subjects (e.g.,
processes) labels called “domain” and objects (e.g., files)
labels called “type.” Each subject (object) has one domain
(type). The configuration of SELinux access control is
based on these label names. For example, the example
description in Figure 2 allows subjects with domain D to
access files with type T in three ways (get attributes, read,
or append). A label name is a character sequence ended by
“ t.” When the same label is assigned to two or more ob-
jects (subjects), they will have equivalent access authority
information. Since we can assign different domains to each
process, it turns out that TE is realizable.

“Role” is related with users. We can relate one role with
two or more users, and we can also relate two or more roles
with one user. A user chooses a role at the time of login,
and user shell is started in a domain corresponding to the
role. Since different roles can grant different authority to
user shell, it turns out that RBAC is realizable.

Next, we explain domain transitions which are methods for
assigning domains to processes. Except for an initializa-
tion process, all the processes are created as a child process
by a parent process. If there is especially no specification,
a child process will inherit the domain of a parent process.
However, if a domain transition is defined clearly, a child
process will be created with another domain. In this way,
we can grant different authority than its parent’s to the child
process.

All of these configurations are performed by editing an ac-
cess control configuration file. Since it means that only
users with the authority for editing the configuration file
can perform an access control configuration, it turns out
that MAC is realizable. Moreover, any access authority
must be clearly described in the configuration file. That
is, any access without such a description will be denied.

Thus, fine access control over every process and user can
be performed in SELinux. Furthermore, the kind of permis-
sion has also increased compared with Linux OS. However,
a fine configuration takes a labor so much. In order to cut
down the labor, we can use macros in SELinux. Although
a user can define his own macros, they are defined also in
the example policy.

3 SELinux Policy Editor

An access control configuration of SELinux is performed
by editing the configuration file. Since it is hard to get hold
of the present state of configuration from the text-based
configuration file, an omission or an error may be in the
configuration result. If such a defect is in a configuration,

objectOsubjectS access configurationfilecheckdomainD typeT
objectOsubjectS access configurationfilecheckdomainD typeT

Figure 1. Additional access control mechanism in SELinux

allow D T file:{ getattr read append };domain name
type name permissions

object class allow D T file:{ getattr read append };domain name
type name permissions

object class

Figure 2. Example description of authority

strong access control of SELinux will be harmed. In order
to reduce the harm, Hitachi Software is developing a con-
figuration tool called SELinux Policy Editor.

We briefly explain the function of SELinux Policy Editor
here. First, SELinux Policy Editor enables us to configure
with GUI (Graphical User Interface). With GUI, we can
visually get hold of the present state of configuration (e.g.,
domain transition). Second, SELinux Policy Editor uses
an original configuration language. A user edits a config-
uration file in the language with GUI, then SELinux Pol-
icy Editor converts the file into the configuration file which
is valid for current version of SELinux. Since the origi-
nal language never depends on the version of SELinux, a
user does not need to be conscious of the current version
of SELinux. Third, some permissions are integrated. Al-
though there are seventeen kinds of permissions for file ac-
cess in SELinux, SELinux Policy Editor integrates twelve
of them into four permissions which are frequently used.
In this way, the configuration can be simplified.

4 Policy Simplification

In this section, we examine effects of the simplification by
SELinux Policy Editor. As an example, we consider con-
figuring a policy as similar as possible to the example pol-
icy for Apache by using SELinux Policy Editor.

4.1 Comparison of Simplification Methods

Both macros in SELinux and integrated permissions in
SELinux Policy Editor simplify the configuration by reduc-
ing the kind of permission. First, we compare these two
simplification methods.

These methods differ fundamentally in whether it is discre-
tionary or mandatory. Although use of macros is discre-
tionary, a user is forced to use the integrated permissions in
SELinux Policy Editor.

Though, in the example policy, macros are frequently used
very much. For example, 90% or more of “read” permis-
sions about file access in the example policy comes from
macros. Therefore, when trying to configure the exam-
ple policy with SELinux Policy Editor, we often consider
expressing macros by using integrated permissions. Table
1 and 2 show correspondences between macros and inte-
grated permissions for file and directory access. Since nor-
mal and necessary access may be denied if authority runs
short, the correspondences are expressed so that a combi-
nation of integrated permissions includes at least all per-
missions which come from a macro. In the tables, “r”
means “read,” “w” means “write,” “a” means “append,”
“x” means “execute,” and “s” means “search.” The macros
named “create” include permissions which allow modifi-
cation not only to contents of a file or a directory but to
their information (e.g., name, last modified date and time,
or even existence). Write-dir-perms macro includes per-
missions which allow modification to contents of a direc-
tory, that is, the macro enables us to make or delete a file or

Table 1: Correspondence between macros and integrated permissionsfor file access

-○×○○create_file_perms setattr, create, link, unlink, rename, write○×○○ra_file_perms setattr, create, link, unlink, rename○×○○rw_file_perms -○○×○rx_file_perms -○××○r_file_perms -○○××x_file_perms sxwr excessive permissionsintegratedpermissionsmacrosTable 1: Correspondence between macros and integrated permissionsfor file access

-○×○○create_file_perms setattr, create, link, unlink, rename, write○×○○ra_file_perms setattr, create, link, unlink, rename○×○○rw_file_perms -○○×○rx_file_perms -○××○r_file_perms -○○××x_file_perms sxwr excessive permissionsintegratedpermissionsmacros

Table 2: Correspondence between macros and integrated permissionsfor directory access
-○×○○create_dir_perms setattr, create, link, unlink, rename, reparent, rmdir, remove_name○×○○ra_dir_perms setattr, create, link, unlink, rename, reparent, rmdir○×○○rw_dir_perms -○××○r_dir_perms sxwr excessive permissionsintegrated permissionsmacrosTable 2: Correspondence between macros and integrated permissionsfor directory access
-○×○○create_dir_perms setattr, create, link, unlink, rename, reparent, rmdir, remove_name○×○○ra_dir_perms setattr, create, link, unlink, rename, reparent, rmdir○×○○rw_dir_perms -○××○r_dir_perms sxwr excessive permissionsintegrated permissionsmacros

a directory directly under the directory.

Table 1 and 2 show that there is no combination of inte-
grated permissions which exactly corresponds to macros
named “write” or “append.” In other words, for example,
write-file-perms macro is integrated into create-file-perms
macro in SELinux Policy Editor. It means that a process
which can edit a file can also modify the information of the
file in any case. However, we can say that they correspond
well about other macros.

4.2 Example of Simplification

As an example of policy simplification, we consider trying
to configure the example policy for Apache with SELinux
Policy Editor, and we examine the difference between
the policy configured and the example policy. Although
SELinux also controls operations on processes and so on
by permission, in this paper, we consider only access con-
trol of files and directories.

Macros are frequently used in the example policy for
Apache, too. We can make the integrated permissions
correspond to the macros exactly, except those which are
named “write” or “append.” Therefore, since the simplifi-
cation by SELinux Policy Editor never affects permissions
which come from such macros, we except them from ex-
amination.

When Apache starts, httpd process is created and httpdt

domain is assigned to the process by a domain transition.
That is, even if an attacker exploits an unknown vulnerabil-
ity of Apache and takes control of a process, the domains
which the attacker can obtain will be limited to httpdt and
domains which httpdt can make transitions to, as shown
in Figure 3. Therefore, we consider the configuration only
about these domains.

Based on the above, we manually analyzed the example
policy. As a result, it turned out that there are two main
kinds of effects that the simplification by SELinux Policy
Editor causes.

One effect is related to macros named “write” or “append,”
as described above. Examples of files and directories which
may be affected by the effect are as follows.

• cache files and directories

• log files and directories

• temporary files and directories

• files and directories which CGI scripts access

• directories for CGI scripts

Another effect is related to “read” and “search” permissions
for directory access. In SELinux, when a process accesses
a file or a directory, the process must be granted not only
permissions on the file or the directory but “search” per-
missions on all directories on the path. On the other hand,
“read” permission for directory access is used to know what
files or directories are directly under a directory. These two
permissions are integrated into the integrated permission
“s” in SELinux Policy Editor. However, in the example
policy for Apache, some domains are granted only “search”
permission on a type. Therefore, with SELinux Policy Edi-
tor, such domains will be granted excessive “read” permis-
sions on the type. Examples of files and directories which
may be affected by the effect are as follows.

• /boot directory

• directories for web pages

• directories for CGI scripts

• users’ home directories

5 Security Evaluation

In the previous section, we examined effects of the simpli-
fication by SELinux Policy Editor on the example policy
for Apache. In this section, we examine whether these ef-
fects harm the security of file access control of SELinux.
We assume that the attacker can obtain httpdt domain and
domains which httpdt can make transitions to and execute
any code in these domains.

the attacker can obtain

domain for httpd
domain for user CGI scripts
domain for system CGI scriptshttpd_t
httpd_user_script_process_t
httpd_sys_script_process_tinitrc_tdomain for startup scripts

: domain transition

the attacker can obtain

domain for httpd
domain for user CGI scripts
domain for system CGI scriptshttpd_t
httpd_user_script_process_t
httpd_sys_script_process_tinitrc_tdomain for startup scripts

: domain transition
Figure 3. Domains which the attacker can obtain from Apache

If a domain is granted a macro named “create” on a type,
we can disregard the effect of macros named “write” or
“append” and granted to the other domains on the type.
The attacker can make an access in a domain granted the
stronger macro named “create” instead of “write” or “ap-
pend.” For example, a domain in which CGI scripts run is
granted rafile perms macro on log files of Apache. How-
ever, since the httpd daemon must manage these log files,
httpd t domain is granted createfile perms macro on them.

Similarly, r dir perms macro includes “read” and “search”
permissions for directory access. Therefore, if a domain is
granted rdir perms macro on a type, we can disregard the
effect of “search” permission granted to the other domains
on the type.

When we disregard such effects, the former list of files and
directories in section 4 changes as follows.

• /var/cache directory

• log directories

• append-only files and directories which CGI scripts
access

• directories for CGI scripts

The latter list changes as follows.

• /boot directory

• users’ home directories

We examine these factors in turn.

If Apache is used as proxy, httpd directory is created under
/var/cache directory as a cache directory. Moreover, since
/var directory is assigned the same type as /var/cache direc-
tory in the example policy, domains are granted the same
authority to /var directory as the authority to /var/cache
directory. As the result of the policy simplification by

SELinux Policy Editor, some domains become to be al-
lowed to delete these directories. However, when we delete
a directory, we must delete all the objects in the directory
in advance. Since the attacker is not allowed to access
most files under /var directory (especially files unrelated
to Apache), what the attacker can newly do is to delete a
directory which is already empty at the most. The same is
said of log directories.

The attacker is originally allowed to append to append-only
files and directories which CGI scripts access. Append-
ing to a directory means only creating a file or a directory
in the directory. As the result of the policy simplification
by SELinux Policy Editor, the attacker is also allowed to
delete these files and directories. The same is said of direc-
tories for CGI scripts. However, because CGI scripts them-
selves are originally read-and-execute-only, it is impossible
for the attacker to delete directories for CGI scripts.

Files in /boot directory are used to start the OS. The con-
figuration of this directory is performed in common among
general domains. As the result of the policy simplification
by SELinux Policy Editor, the attacker is allowed to obtain
the list of files and directories in the directory. However,
this does not mean that the attacker becomes to be able to
modify or delete these files or directory. The same is said
of users’ home directory.

In SELinux Policy Editor, a type name depends on the path
name of an object to which the type is assigned. Thus,
SELinux Policy Editor always assigns a different type to
each file and directory. Therefore, in the simplified pol-
icy, we can easily remove added permissions from Apache-
unrelated objects independently. However, we cannot con-
ceal Apache-unrelated objects directly under directories in
the path of an Apache-related object because a “read” per-
mission on such directory must be granted at the same time
with a required “search” permission. Moreover, we cannot
reduce the effect of the problem of deletion of append-only

objects because the permissions for append-only access are
completely integrated.

That is, possible effects of SELinux Policy Editor on the
security of SELinux are as follows.

• risk of modification or deletion of some append-only
files or directories which Apache accesses.

• risk of exposure of lists of some directories (e.g.,
users’ home directories)

The risk of modification or deletion can be thought only
about Apache-related and append-only objects. The secu-
rity for the other objects is still maintained with SELinux
Policy Editor. If there is an object whose existence must
be concealed in a system, the integration of “read” and
“search” permissions may harm the security of the system.
However, we can minimize the risk by putting such a ob-
ject in an appropriate place and by making an additional
configuration.

6 Conclusion

In this paper, we examined effects of the simplification by
SELinux Policy Editor on the example policy for Apache
and evaluated the security of SELinux with the policy about
file access control. Then, we explained how SELinux Pol-
icy Editor affects the security of SELinux.

As a future work, we will examine on other examples and
consider effects of the simplification generally, so that we
can study how we can integrate the permissions of SELinux
in order to simplify the configuration while we never harm
the security.

References

[1] Security-Enhanced Linux
URL=http://www.nsa.gov/selinux/

[2] P. Loscocco and S. Smalley, Integrating Flexible Sup-
port for Security Policies into the Linux Operating Sys-
tem,Proc. of the FREENIX Track of the 2001 USENIX
Annual Technical Conference, Boston, USA, 2001, 29–
42.

[3] S. Smalley, Configuring the SELinux Policy, NAI Labs
Rep. 02-007, 2003.
URL=http://www.nsa.gov/selinux/policy2-abs.html

[4] SELinux Policy Editor
URL=http://www.selinux.hitachi-
sk.co.jp/en/tool/selpe/selpe-top.html

[5] Y. Nakamura and Y. Sameshima, Configuration system
for access control policy of Security-Enhanced Linux,
Proc. of the 2003 Symposium on Cryptgraphy and
Information Security (SCIS 2003), Shizuoka, Japan,
2003, Vol. II, 831–836.

[6] Tresys Technology. SELinux research.
URL=http://www.tresys.com/selinux/index.html

[7] T. Jaeger, R. Sailer, X. Zhang, Analyzing Integrity Pro-
tection in the SELinux Example Policy,Proc. of the
12th USENIX Security Symposium, Washington D.C.,
USA, 2003, 59–74.

