
Evaluation of Obfuscation Scheme Focusing on Calling
Relationships of Fields and Methods in Methods

Kazuhide FUKUSHIMA
Graduate School of Information Science

and Electrical Engineering
Kyushu University

6-10-1 Hakozaki, Higashi-ku
Fukuoka, 812-8581 Japan

email: fukusima@itslab.csce.kyushu-u.ac.jp

Toshihiro TABATA, Kouichi SAKURAI
Faculty of Information Science

and Electrical Engineering
Kyushu University

6-10-1 Hakozaki, Higashi-ku
Fukuoka, 812-8581 Japan

email:{tabata,sakurai}@itslab.csce.kyushu-u.ac.jp

ABSTRACT
Recently, Java has been spread widely. However, Java has a
problem that an attacker can reconstruct Java source codes
from Java classfiles. Therefore many techniques for pro-
tecting Java software have been proposed, but, quantitive
security evaluations are not fully given. This paper pro-
poses an obfuscation scheme for Java source codes by de-
structing the encapsulation. In addition, we propose an
evaluation scheme on the number of accesses to the fields
and the methods of the other classes. We try to realize
tamper-resistant software with the certain quantitive basis
of security using our evaluation.

KEY WORDS
Obfuscation, Software security, Java, Software metrics

1 Introduction

1.1 Background

Recently, cost of hardware is dramatically decreasing by
innovations in techniques. On the other hand, cost of soft-
ware is increasing relatively. It is one cause that the scale
of software became large. We come to be able to per-
form complicated processing by improvement in the capa-
bility of computers. Besides, software development relies
on manpower though we use today’s technologies. That is
another cause.

In case software circulates widely through networks,
we should give careful consideration to protection of copy-
rights. Protection against stealing of key algorithm and se-
cret data in a program is true for this. Software develop-
ment requires many man-days. However, an attacker can
steal the software easily. That is why information security
technology to protecting software is required.

Java has spread widely. Java source codes are com-
piled to object files called Java classfile. The classfiles
are executed on the executer called Java Virtual Machine
(JVM). The same classfiles can run on different platforms
because the JVM for each platform is prepared. Java pro-

grams can run on portable phones and small information
terminals such as Personal Digital Assistants (PDA).

On the other hand, Java classfiles contain information
such as name of class, name of super class and names of
methods and fields defined in the class file. This informa-
tion may be a clue to analyze the classfile. Moreover, the
description of class file can be divided into description of
field and methods[2]. Therefore, Java classfiles have high
readability. As the result, an attacker can obtain Java source
codes easily by decompiling Java classfiles. He can steal
secret data and key algorithms by his reverse engineering
of the obtained source code.

Obfuscation makes software difficult to analyze,
while keeping the functionality. We can make the theft of
program difficult by applying obfuscation.

1.2 Our contribution

1.2.1 Obfuscation scheme focusing on the en-
capsulation of Java

We propose an obfuscation scheme for Java source codes
focusing on properties of object-oriented languages. We
transfer local variables and instructions groups in an ar-
bitrary method to the other classes. Static variables and
static methods in Java belong to a class itself instead of an
object of the class. Therefore, the variables and methods
can be accessed from any classes in form of “classname.
identifier”. We change local variables into static variables,
and instructions groups into static methods for transferring
them to another class.

Generally, fields and methods is defined as a whole
in Java program. We can not massage private filed with-
out using public method from an external class. Thus, each
class have high independence. For the reason, it is easy
to understand a Java program by analyzing each classfile
constructing the Java program. On the other hand, encap-
sulation structure is destroyed in a Java program obfuscated
by our scheme. The independency of each class becomes
weaker. In this situation, an analysis for every classfile

does not make sufficient sense. That is, in order to analyze
a classfile, we must investigate the other classes contains
static fields and static methods accessed from the class. As
the result, it is inefficiently to analyze each classfile indi-
vidually. That is, in order to analyze a classfile, we must
investigate the other classes contains static fields and static
methods accessed from the class. Therefore, the breaking
time of obfuscated program is longer than that of the source
program.

1.2.2 Evaluation scheme

We propose the evaluation scheme for our obfuscation
scheme. The evaluation scheme is based on the number of
accesses to fields and methods of the other classes. First,
complexity of the class is defined as the total number of
fields and methods declared in the other classes accessed
from the class. Next, complexity of the Java program is
defined as the total complexity of each class declared in
the Java program. Finally, the effectiveness of the obfus-
cation (Effect) is defined as difference the complexity of
the obfuscated program and the complexity of the original
program.

1.2.3 Experiments

We evaluate the proposed obfuscation scheme by our evalu-
ation scheme. We investigate a correlation between and the
Effects, software metrics, and breaking times of programs.
Our results showsEffectand software metrics showing the
complexity of a program increase by applying our obfusca-
tion scheme repeatedly. And, the increase rate of breaking
time to that ofEffect tend to becomes high asEffect in-
creases. Finally, we confirm that execution time increases
only 54% even when the breaking time become 10 times.

2 Related works

Many techniques for protecting software have been pro-
posed. In this section, we explain encryption, server-side
execution, and obfuscation.

We can protect programs by encrypting them. How-
ever, encrypted programs can not run as they are. There-
fore, they must be decrypted before execution or be exe-
cuted on the executor with decoder.

In server-side execution, a program are divided into
a private part, which executes on the server, and a public
part, which runs locally on the user’s computer[3]. The
private part of the program can be protected entirely, be-
cause an attacker can not get it. However, server-side ex-
ecution requires communication between the server and
clients. Moreover, in case many user use this program at
the same time, the load of the server will increase.

Obfuscation makes a program difficult to analyze,
while functionality are preserved. Obfuscated program can
be run on a computer, as well as original program. We can

mitigate the danger that users or third persons analyze by
distributing obfuscated program.

Many obfusacation schemes have been proposed.
Monden et al. proposed an obfuscation scheme for C pro-
grams contain loops[4]. Collberg et al. proposed an obfus-
cation scheme for Java programs by injecting dummy codes
and complicating data structures and control flows[5]. Few
obfuscation schemes have basis of security. Wang et al[6]
showed that statically determining precise indirect branch
addresses is a NP-complete problem in the presence of gen-
eral pointer. And, they proposed an obfuscation scheme
using global arrays and pointers of C programs in their
scheme. Ogiso et al[8] proposed an obfuscation scheme
that makes interprocedual analysis of C programs difficult
using function pointers. They showed that the problem
of determining the address a function pointer points to is
NP-hard. Sakabe et al. proposed an obfuscation scheme
for Java programs using properties of object-oriented lan-
guages. Their schemes is based on difficulty of Java
programs containing interfaces and method overloads[9].
Their obfuscation scheme has the same security as obfus-
cation schemes[6, 9].

In case we protect digital contents with information
security technology, we should realize the security accord-
ing to worth of contents. When we protect software by
obfuscation scheme, we have to realize the security accord-
ing to worth of software. In order to prove this security, it
is required to be able to evaluate the effect of obfuscation
quantitatively. However, quantitive security evaluations of
obfuscation schemes are not fully given.

3 Proposed obfuscation scheme

3.1 Our view

This paper proposes an obfuscation scheme for Java source
codes focused on properties object-oriented languages.
Data structures (fields) and operations to them (methods)
of a Java classes are intimately tied together. We call it en-
capsulation. We can operate private fields only by using
public methods from external classes. As the result, each
classfile has high independency. We obfuscate Java source
codes by destruction of the encapsulation.

Static variables and static methods in Java belong to a
class itself instead of a specific object of the class. There-
fore, the variables and methods can be accessed from any
classes in form of “classname. identifier”. In our proposed
obfuscation scheme, local variables and instructions groups
are transferred to the other classes as static fields and static
methods. In this situation, an attacker has to know struc-
tures of all classes when he analyzes a Java program by
reverse engineering. It means that the Java source code be-
come difficult to analyze.

�����
��

��	
�
��

�
���
������

�

�����
��

��	
�
��

�
���
�
�����

�
�
����

����

�

�����������
�����������

������
	� �

!"
����"#$!"
����"#%!"
����"#$

Figure 1. Transference of local variables

3.2 Transference of local variables in a
method

This technique is applicable to an arbitrary methodmof an
arbitrary classC.

1. Choose an arbitrary local variablev , which is trans-
ferred to the other classes, from methodm.

2. Choose an arbitrary classC’ where we place the vari-
able. And, declare the variablev as a new static field
in the classC’ .

3. Correct the statements which access the local variable
chosenv in methodm. That is, static fields declared
in (2) is accessed from methodmin form of “C’.v ”.

4. Finally, delete the variable declaration of local vari-
ablev in methodm.

Fig.1 shows an example of obfuscation by transfer-
ring of local variables. In this example, two local variables
a and b in classA are transferred to classB. New static
fieldsa andb are declared in classB.

3.3 Transference of instructions groups in a
method

This technique is applicable to an arbitrary methodmof an
arbitrary classC.

1. Choose an arbitrary instructions group(s0, s1,
..., sn) , which are transferred to the other
classes, from the statements set ofm except assign-
ment statements for local primitive variables.

2. Choose an arbitrary classC’ where we place the in-
structions group. And, declare the a new static method
m’ consist of instructions group(s0, s1, ...,
sn) .

3. Describe call to static methodm’ , in the spot in front
of instructions group(s0, s1, ..., sn) in m.
Static methodm’ is called in form of ”C’.m’ (argu-
ments)”.

�����
��

�
�
	
�

�
	

��

�
��

�����
�

�
	
���	

���

�
	��

�
	�
��

�
	
���	

���

�

�

���� �!"
" �

#$ ��%����
��

&
�
'(&�

')�*
&
�+(

&
�+
,�*

�

�

-�
!!. �/0 -�
!!. �/--�
!!. �/0

�����
��

�
�
	
�

�
	

��

�
	
���	

���

�
	��

�
	�
��

�
	
���	

���

�
�

�

1�.�!�
" $2

Figure 2. Transference of instructions groups

4. Correct the access modifications of all fields, accessed
from static methodm’ , to public, so thatmcan access
to these fields.

5. Finally, delete instructions group(s0,s1,...,
sn) in methodm.

In Java, primitive arguments are called by value[1]. There-
fore, if assignment statements for local primitive variables
of methodmare transferred to the other classes, the vari-
ables can not be changed from static methodm’ . This is
why assignment statements for local primitive variables are
excluded in (1).

Fig.2 shows the example of obfuscation by transfer-
ring of instructions group. In this example, two statements
B.b=B.b+y andB.c=B.c*x in classA are transferred
to classC. A new static methodm2 is declared in class C
and method call tom2is described in class A.

3.4 Consideration

Monden et al. claim that a obfuscationτ must satisfy the
following two properties and shuld satisfy a propety [4].
We confirm that our obfuscation scheme satisfies the prop-
erties.

• The output of obfuscated programτ(P) is the same as
that of source program P.

• The breaking time ofτ(P) is longer than that of P.

These two properties must be saticefied.

• The execution time ofτ(P) is not much longer than
that of P.

This property is not nessesary but desirable to satisfy.

3.4.1 Equivalence of output

Even if local variables in a method are transferred to an-
other class as static fields, the method can access the vari-
ables by specifying the class name and the field name.
Moreover, even if instructions groups are transferred to

another class as static methods, the procedure does not
change. The difference of the scope of variables can solved
by passing arguments. Therefore, the equivalence of the
programs are preserved.

3.4.2 Breaking time of program

Java class is generally designed to realize a specific func-
tionality. The variables and statements for realizing the
functionality are defined as a class. We have only to an-
alyze each class file to understand the program. On the
other hand, encapsulation structure of obfuscated program
is destroyed. As the result, it is inefficiently to analyze each
classfile individually. That is, in order to analyze a classfile,
we must investigate the other classes contains static fields
and static methods accessed from the class. Therefore, the
breaking time of obfuscated program is longer than that of
the source program.

3.4.3 Execution time

Even if local variables in a method are transferred to an-
other class as static fields, the access speed hardly changes.
We confirm the fact by measuring access time to local vari-
ables and static field in Java program. Moreover, even if
instructions groups are transferred to another class as static
fields, the access speed hardly changes. Because the proce-
dure of the instruction groups statements does not change
unless dummy codes are injected or control flows are com-
plicated.

4 Evaluation

4.1 Proposed evaluation scheme

We give an evaluation scheme for our proposed obfuscation
scheme. The evaluation scheme is based on the number of
accesses to fields and methods of the other classes.e(C)
represents the complexity of the class C. e(C) is defined as
the total number of fields and methods declared in the other
classes accessed from C.E(P) represents the complexity of
the Java program P.E(P) is defined as the total complexity
of each class declared in P. That is,

E(P) =
∑

C∈P

e(C).

Finally, Effectiveness(τ) represents the effectiveness of
the obfuscationτ . Effectiveness(τ) is defined as differ-
ence the complexity of the obfuscated program and the
complexity of the original program. That is,

Effectiveness(τ) = E(τ(P))− E(P).

Table 1. The properties of source codes

P0 P1 P2 P3 P4 P5
Size (B) 369 563 924 959 1428 1939
Lines 26 39 48 54 78 105

Methods 2 4 4 6 10 19
Classes 2 3 4 5 5 6

Complexity 2 4 19 29 34 45
Effectiveness 0 2 17 27 32 43

Execution time

(10−6 s)
539 664 673 747 817 831

Table 2. The breaking times

P0 P1 P2 P3 P4 P5
subject1 360 240 350 550 600 1600
subject2 150 400 580 1020 1120 1780
subject3 120 320 560 840 1230 1880
subject4 120 380 620 940 1150 2120
subject5 180 350 650 730 1250 2660
average 186 338 552 816 1070 2008

4.2 Experiments

4.2.1 Procedure of experiment

We investigate a correlation between each subject’s break-
ing time of obfuscated programs and theEffectivenesses of
them in order to confirm that our evaluation scheme is suit-
able. The procedure of the experiment is as follows.

1. We make a source code P0 of the program that outputs
first 20 terms of the Fibonacci sequence.

2. We make source codes P1, P2, P3, P4, and P5. These
source codes are obtained by obfuscating the P0.Ta-
ble.1shows the detail of each source code. The output
of these program is same, but, theEffectivenesses of
them are different respectively.

3. The six sources codes (P0 to P5) are passed to five
subjects. The subjects break the programs. We re-
gard the breaking of a program is completed when the
subject understands the execution path, operations and
data flows along the path of the program. The subjects
records the breaking times of source codes P0 to P5.
Table.2shows the results.

4.2.2 Results

Fig.3 shows a correlation between the breaking times and
theEffectivenesses of the obfuscations. The breaking times
and theEffectivenesses of the obfuscations have a positive
correlation, though there are individual differences. Next,
Fig.4 shows the correlation between the average of five

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45

tim
e[

se
cs

]

effect

Figure 3. Correlation between each subject’s breaking time
of obfuscated programs and theEffectivenesss of obfusca-
tions

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 5 10 15 20 25 30 35 40 45

T
im

e(
s,

10
^-

6
s)

Effect

braking time
exection time

Figure 4. Correlation between the average of five subjects’
breaking time, the breaking time, and theEffectivenesss of
obfuscations

subjects’ breaking time, and theEffectivenesses of the ob-
fuscation. The breaking time grows more rapidly than the
Effectivenesses of obfuscations.

4.3 Evaluation by Software Metrics

4.3.1 Metrics

We evaluate six source codes (P0 to P5). We use following
six object oriented software metrics.

• Number of message sends (NOM)
We can measure the size of a method without devia-
tion. Mutual relation with other classes increases as
number of message sends increases. Thus, the analy-
sis of the program becomes more difficult.

• Depth of inheritance tree (DIT)
The possibility of a method being overwritten or be-
ing extended becomes high as the inheritance tree be-
comes deep. Thus, the analysis of the program be-
comes more difficult.

• Number of instance method (NIM)
Number of objects, which cooperates with instance,
increases as number of instance increases. The class
with many instance methods will do many processing.
This class is complicated.

• Number of class method (NCM)
Number of class methods shows the quantity of the
common procedure which can be done to all instances.
If services, applied by each instance, are offered by the
class itself, there are many condition branches based
on the data type. In this case, class is complicated.

• method complexity (MCX)
We calculate the method complexity using the follow-
ing weight. The method complexity becomes larger as
the method becomes more complicated.

– API calls (5.0)

– Substitution (0.5)

– Arithmetical operation (2.0)

– Messages with arguments (3.0)

– Nested expression (0.5)

– Arguments (0.3)

– Primitive calls (7.0)

– Local variables (0.5)

– Messages without arguments (1.0)

• Class cohesion (CCO)
Class cohesion is the number of kinds of messages.
Class cohesion increases as cooperative relation with
other classes become increases. The classfiles with
strong dependence is difficult to analyze, since it is
inefficiently to analyze each classfile individually.

4.3.2 Results

Table.3 shows software metrics for source codes (P0 to P5).
NOM and CCO increased because the number of messages
and the number of kinds of them increased. The increase of
NOM and CCO indicates relations between classes become
difficult. NCM increased because we redefine all trans-
ferred instructions groups as class methods. The increase
of NCM indicates class becomes complicated. Moreover,
MCX increases because number of messages and argu-
ments increase. DIT and NIS did not increase, because our
proposed obfuscation scheme does not focus on these prop-
erties.

Table 3. Software metrics of source codes

P0 P1 P2 P3 P4 P5
NOM 3 5 5 7 12 24
DIT 1 1 1 1 1 1
NIM 1 0 0 0 0 0
NCM 1 3 3 5 9 18
MCX 24.8 32.7 42.0 51.0 65.3 151.4
CCO 3 5 5 7 10 20

4.4 Consideration

All the obfuscated programs (P1 to P5) output the first 10
terms of the Fibonacci sequence as same as original pro-
gram (P0). According to the fact, we confirm the equiv-
alence of the programs. Next, we confirm thatEffective-
nesses of the programs increase as applying our obfusca-
tion scheme repeatedly. Software metrics which indicate
complexity of relations between classes also increase. The
increasing rate of theEffectivenesstends to increase as the
Effectivenessincreases. Moreover, the breaking times and
the Effectivenesses have a positive correlation. Thus, we
can see that breaking time of the obfuscated programs are
longer than that of original program. Finally, it is hoped
that the execution time of the obfuscated programs is al-
most equal to that of the original program. Unfortunately,
However, the execution time of the program (P5) increases
only 54% while the breaking time becomes 10 times.

5 Conclusion

We propose an obfuscation scheme for Java source codes
focusing on properties of object-oriented languages. Class-
files in obfuscated program by our scheme have strong de-
pendence. That is, in order to analyze a classfile, we must
investigate the other classes contains static fields and static
methods accessed from the class. Therefore, the breaking
time of obfuscated program is longer than that of the source
program. As the result, it is inefficiently to analyze each
classfile individually.

In addition to, we propose the evaluation scheme for
our obfuscation scheme. The evaluation scheme is based on
the number of accesses to fields and methods of the other
classes.

Moreover, we investigate a correlation between and
the Effects, software metrics, and breaking times of pro-
grams by experiments. Our results showsEffectand soft-
ware metrics showing the complexity of a program increase
by applying our obfuscation scheme repeatedly. And, the
increase rate of breaking time to that ofEffect tend to be-
comes high asEffect increases. Finally, we confirm that
execution time increases only 54% even when the breaking
time become 10 times.

References

[1] J. Gosling, B. Joy, G. Steele, and Gilad Bracha,The
Java Language Specification Second Edition, Pearson
Education Company, 2000.

[2] T .Lindholm and F.Yellin”,The Java Virtual Machine
Specification, Pearson Education Company, 1999.

[3] D. J. Albert and S. P. Morse, “Combating software
piracy by encryption and key management,”IEEE
Computer, pp. 68–73, 1984.

[4] A. Monden, Y. Takeda, and K. Torii, “Methods
for scrambling programs containing loops,”IEICE
Transactions on Information and Systems, vol. J80-
D-I, no. 7, pp. 644–652, 1997.

[5] C.Collberg, C.Thomborson, and D.Low, “A taxon-
omy of obfuscating transformations,” Technical Re-
port of Deptartment of Computer Science 148, Uni-
versity of Auckland, New Zealand, 1997.

[6] J.Knight C.Wang, J.Hill and J.Davidson, “Software
tamper resistance: obfuscating static analysis of pro-
grams,” Technical report sc-2000-12, Department of
Computer Science, New Zealand, 2000.

[7] M .Lorenz, J .Kidd “Object-Oriented Software Met-
rics,” Pearson Education POD, 1994.

[8] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, “A
new approach of software obfuscation based on the
difficulty of interprocedural analysis,”IEICE Trans-
actions on Fundamentals, vol. E86-A, no. 1, pp. 176–
186, 2003.

[9] Y. Sakabe, M. Soshi, and A. Miyaji, “Software ob-
fuscation for object oriented languages,” Technical
report of IEICE No.95, Vol.42 , pp. 38–43, 2002.

