Proposal and Implementation of Heterogeneous Virtual

Storage Coexisted of Single Virtual Storage and Multiple

Virtual Storage

Toshihiro TABATA
Faculty of Information Science and Electrical Engineering, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

and

Hideo TANIGUCHI
Faculty of Engineering, Okayama University
3-1-1 Tsushimanaka, Okayama 700-8530, Japan

ABSTRACT

Most of Operating Systems (OSs) provide processes
with virtual memory. One advantage of this tech-
nique is that programs can be larger than physical
memory. In addition, this technique abstracts main
memory into large address space and frees program-
mers from the limitation of main memory. Single
Virtual Storage (SVS) or Multiple Virtual Storage
(MVS) are implemented in current OSs, but SVS
and MVS do not coexist in existing OSs. If they co-
exist in an operating system, users can make use of
each advantage. In this paper, we propose Hetero-
geneous Virtual Storage (HVS). Because SVS and
MVS can coexist in HVS, HVS can provide both of
the advantages of SVS and MVS to users. We also
describe about implementation of HVS on The EN-
during operating system for Distributed EnviRon-
ment (Tender). After that, we explain contents of
experiments and report that result.

Keywords: Virtual storage, Operating sys-
tem, HVS, Process creation, Process migra-
tion

1 Introduction

Most of Operating Systems (OSs) provide processes
with virtual memory. One advantage of this tech-
nique is that programs can be larger than physical
memory. In addition, this technique abstracts main
memory into large address space and frees program-
mers from the limitation of main memory.

Single Virtual Storage (SVS) and Multiple Vir-
tual Storage (MVS) are typical examples of virtual
memory. One feature of SVS provides a single vir-
tual address space to all processes. On the other
hand, one feature of MVS is that each process has
an independent virtual address space. SVS or MVS
are implemented in current OSs, but SVS and MVS

do not coexist in existing OSs. If they coexist in an
OS, users can make use of each advantage.

In this paper, we propose Heterogeneous Vir-
tual Storage (HVS). Because SVS and MVS can
coexist in HVS, HVS can provide both of the ad-
vantages of SVS and MVS to users. We also de-
scribe about implementation of HVS on The EN-
during operating system for Distributed EnviRon-
ment (Tender)[l]. Tender has been developed
at Kyushu University and Okayama University in
Japan. After that, we explain contents of experi-
ments and report that result.

2 Related Work

Memory protection is one of the main issues of SVS,
and several studies have been made on it. Opal[2] is
an OS that provides a single virtual address space. It
presents the concept of memory sharing and protec-
tion and realizes protection domain. Opal threads
execute within protection domain in a single virtual
address space and there is no loss of protection.

In UNIX, MVS is implemented, and shared
memory is used for data sharing. Efficient mem-
ory operation method is also proposed for remote
machine in distributed environments[3].

In HVS, a process which needs memory protec-
tion has own virtual address space. It is similar to
MVS. On the other hand, processes which do not
need memory protection, exist on a virtual address
space. It is similar to SVS. In order to cooperate
with each other efficiently, these processes exist in a
virtual address space, and trust in each other.

The protection mechanism of HVS restricts
process creation and migration. To create a process
on an existing virtual address space and to migrate
a process, the access right is needed.

data only

3 processes

by process migration

2 processes
by process migration

/

migration

virtual storage spaces

Figure 1. Overview of HVS.

3 Heterogeneous Virtual Storage

Comparison with Single Virtual Storage and
Multiple Virtual Storage

In this section, we compare SVS with MVS.

SVS provides a single virtual address space to
all processes. Therefore, processes share the virtual
address space, but a process cannot use all of virtual
address space. In addition, it is necessary to protect
memory space of each process from other processes.
The feature of MVS is each process has an indepen-
dent virtual memory space. The address space is
separated from other processes logically. Thus, each
process can own virtual address space.

Memory protection is one of the main issues
of SVS, but memory protection mechanism is not
necessary for MVS, because each process has own
virtual address space. Besides, MVS is superior in
available address space, because each process has
own address space. On the other hand, SVS is su-
perior in context switch, because it does not include
change of an address space.

Current OSs are implemented SVS or MVS,
but SVS and MVS do not coexist in an existing OS.
If they coexist in OSs, users can make use of each
advantage. The purpose of this study is to propose
new virtual storage that has advantages of SVS and
MVS.

Overview of HVS

MVS and SVS have contractive advantages, as
stated above. If MVS and SVS can coexist in an OS,
we can make use of each advantages. Therefore, we
propose Heterogeneous Virtual Storage coexisted of
MYVS and SVS.

Figure 1 shows the overview of HVS. There are

three functions of HVS.

(1) HVS provides multiple virtual address spaces.
In figure 1, three virtual address spaces exist.

(2) There are more than zero processes on a virtual
space.

In figure 1, no process exists on the center of
virtual address spaces, after a process migrated.

The virtual address space is for data.

A process can migrate to other virtual address
spaces. In figure 1, a process migrates from the
center of virtual address spaces to the right one.

Therefore, HVS has both SVS’s advantages and
MVS’s advantages.

By using function 1 and function 2, we can
make use of both advantages only. Besides, we can
make use of these advantages effectively by using
function 3. For example, processes which cooperate
with each other closely can be executed in the same
virtual address space. On the other hand, processes
which do not cooperate with each other, can be lo-
cated in each virtual address space separately. As a
result, these processes are protected from other pro-
cesses. If the relation of processes changes dynami-
cally, a process can migrate to other virtual address
space.

A virtual address space where data only exist
can be created on HVS. Hence, multiple processes
can share a huge data in a virtual address space,
and can use it with time-sharing.

4 Implementation on Tender

We implemented HVS in Tender. In this section,
we explain Tender and describe about the prob-

‘ place ‘ kind id in a resource

(A) resource identifier

/
machine 1 machine 2
process program plate

NN [

procA procB programA programB plateA plateB

(B) resource name

Figure 2. Resource identifier and resource name.

lems of the implementation, and the solution.

Overview of Tender

Resource Independent: Tender is based
on resource independent. Resource independent
means that the objects that OS operates are sep-
arated as resources and are individualized. The re-
sources are given resource name and resource identi-
fier. Figure 2 shows the structure of resource identi-
fier and resource name. Besides, the interface of the
operation of resources is unified. Furthermore, the
components of programs that operate each resource
are separated. The management information of each
resource is also separated between each resource.

On existing OS, existence of process elements
depends on process that own process elements, be-
cause the management information of each process
element is stored in the process management table.
If a process is deleted, the entry of process man-
agement table is cleared. As a result, process ele-
ments and the information of process elements are
also cleared.

On Tender OS, the existence of each resource
does not depend on other resources and process,
because the table of each resource is separated.
Therefore, processes and virtual memory spaces are
independent each other. For example, users can
create a virtual memory space that any process
does not exist.

Resource Interface Controller: One of the
main features of Tender is unified interface as I
mentioned before. We call the unified interface ”Re-
source Interface Controller (RIC)”. Table 1 shows
the unified interface on T'ender. There are five
interfaces. ”resourcename” is a pointer of strings,
which indicate resource name. ”pid” is current pro-
cess id. ”args” is a pointer of structure of arguments.
"mod” is a mode of Resource Capability Control
(RCC). 7rid” is resource id.

These interfaces are called, when a program
part of Tender operates a resource. RIC controls

Program Pointer Table

—
-] \\
P
\ Program E
Type of Program C
resources .
.
. \ \
‘ ‘ ‘ ‘ Program A Program B

Type of operations
open, close, read, write, control

Figure 3. Program pointer table.

Table 1. Unified interface of RIC.

open_rsc(resource_name, pid, args, mod)
close_rsc(rid, pid, args)

read-rsc(rid, pid, args)

write_rsc(rid, pid, args)

control rsc(rid, pid, args)

the call of a program part of each resource. In order
to control the call, RIC has a program pointer table,
which is stored pointers of program parts of each
resource. Figure 3 shows the program pointer table.
This table is two-dimensional array. The rows of
the program pointer table represent the type of
operations (open, close, read, write, control), and
the columns represent the type of resources. After
RIC is called by any program parts of T'ender,
RIC checks the resources name or resource id which
is the first argument in order to get the type of
resources. Then RIC searches a pointer which is
indicated by type of resource and type of operations
in the program pointer table, and calls a program
which is addressed by the pointer.

Figure 5 shows overview of HVS implemented
on Tender.

Resource Capability Control: Tender has
the access control mechanism in RIC. It is called
”Resource Capability Control (RCC)”[4].

Every resources of T'ender are assigned the
mode of access right, when the resources are created.
RCC has the access matrix. The rows of the access
matrix represent subjects which are user or groups
or others, and the columns represent resources. The
access right consists of open, close, read, write and
control.

The mode can be modified by the interface
of RCC. RCC checks the capability of a target
resource, before RIC calls a target program. If the
access has the access right of the operation, RIC

process A

text +—
data +—

user stack+—

process B

process G

P

i
1
virtual user space;
1
[:| virtual space :

data only 2 processes
3 processes by process migration

by process migration

process D

virtual region

Figure 5. Resources used by processes.

physical memory

text

data
BSS

user stack

(0N

Dvirtual space Dvirmal user space Dvirtual kernel space .virtual region

Figure 4. Memory resources on T'ender.

calls the target program. If not, RIC returns an
error value to a caller program.

Memory Resources on Tender: Figure
4 shows memory resources on Tender. In this
figure, “virtual region” is a resource that virtualizes
the data storage region information of the physical
memory or the external storage. “Virtual space” is
a space of the virtual address and corresponds to the
mapping table where the virtual address is mapped
into the physical address. “Virtual user space” is a
space which is accessible from the processor by the
virtual address. It is created by attaching “virtual
region” to “virtual space” and deleted by detaching.
Here, the attaching means to store the information
of data storage region in the mapping table.

Problem of Implementation
In order to implement HVS, the problem that

we have to consider is described as follows.

(1) Avoidance of stack address collision in process
migration between virtual address spaces.

(2) Avoidance of address collision of program
in process migration between virtual address
spaces.

(3) Access control of process creation and migration

Allocation of Stack: HVS realizes more than
zero processes can exist in a virtual address space,
and a process can migrate other virtual address
space. Thus, the stack address of each process has
to be different among processes. We calculate the
stack address by process id, and shift the stack
address of each process. As a result, each process
has a unique stack address.

Address of programs: The address of text
region, data region and bss region of programs
which access same files or communicate with each
other has to be shift in order to avoid the collision
of the address. Because not all programs need to
run in same virtual address space, we recompile the
programs and shift the address statically.

Access Control of Process Migration:
We need security mechanism for HVS, because
processes can migrate to other virtual memory
space, and more than one process can exist on a
virtual memory space. We realize that mechanism
using capability. We assign capability which shows
access right to each resource as described above.
Subjects are owner, group and others. Objects
are each resource. Types of operations are open,

N
3]

o
[}
(2]
E
w
2
g 20
s
="
=}
=
[
o 15
el
o
c
©
[2]
@
[}
g 10
a
="
j=
=
©
© 5| —e—new VM
.: _g existed VM, second table non—exist
[«]
2 o existed VM, second table exist
=
0 L .)
0 10 20 30 40

size of text (KB)

(A)

Time of creating process and deleting process (msec)

N
3]

N
o

[

o

+—new VM

o

_g existed VM, second table non—exist

_a— existed VM, second table exist

o

0 10 20 30 40
size of data (KB)

(B)

Figure 6. Evaluation result of process creation and deletion.

close, read, write and control. The access rights
are check in resource interface controller. To create
a process on existing virtual memory space, users
need the right of write operations of the virtual
address space. In order to make a process migrate
to another virtual memory space, users also need
the right of write operation of the virtual address
space.

Advantages
There are three advantages of HVS.

(1) Processes can migrate to other virtual memory
spaces.
On HVS, more than one process can exist on a
virtual memory space. Thus, a process can mi-
grate to other process’s virtual memory space.
As a result, processes on a same virtual mem-
ory space can share data and communicate with
each other.

(2) Fast process creation and deletion.

Tender can create a process on an existing vir-
tual memory space, because more than one pro-
cess can exist on a same virtual memory space.
It can reduce the processing time of process cre-
ation, because the process does not involve cre-
ation of virtual memory space. It can also re-
duce the processing time of process deletion.

(3) Reduction of overhead of inter-process commu-
nication.
If they communicate with each other frequently,
we can reduce the overhead of context switch
between them.

5 Evaluation

In order to evaluate the advantages of HVS, we mea-
sured the processing time of process creation and
deletion. We also measured the processing time of
process migration. We used a personal computer
(Pentium 90MHz).

Virtual space consists of two steps of manage-
ment tables. When virtual space is created, only the
first table is created. The first table always exists,
but the second table does not always exist, because
the second table is created on demand in attaching
virtual region. We can reduce the processing time of
virtual space. For this reason, the processing time
of process creation and process migration is affected
by the existence of the second table.

The evaluation is performed on three conditions

(case 1) new virtual memory space (VM)
(case 2) existed VM, second table non-exist
(case 3) existed VM, second table exist

Process Creation

We made a benchmark program that create a
process and delete it. The program repeats that
processing 1000 times and outputs the average time
of a process creation and deletion.

Figure 6 shows the results of the benchmark
program on T'ender. We changed the size of text
region (A) and the size of data region (B).

The processing time of process creation and
deletion is proportional to the size of text region or
data region. The processing time does not depend
on type of region, because there is no difference of

(A) and (B).

— e

—s—new VM
4 | _g— existed VM, second table non—exist

_a— existed VM, second table exist

.___H———I—I/'\.—__.

Time of process migration (msec)
w

size of text (KB)

(A)

40

Time of process migration (msec)

4| _u existed VM, second table non—exist

‘__‘___‘__‘___,/’\o——ﬁ

—o—new VM

—a— existed VM, second table exist

-

size of data (KB)

(B)

Figure 7. Evaluation result of process migration.

The processing time of case 2 is shorter than
that of case 1 for 2.7 millisecond which is process
time of virtual space creation. This time is creation
of virtual space, the result shows the advantage 2
described above. The processing time of case 3 is
shorter than that of case 2 for 1.8 millisecond which
is processing time of creation of the second table of
virtual space.

Process Migration

We made a benchmark program that migrate a
process to other virtual space. The program repeats
that processing 1000 times and outputs the average
time of a process migration.

Figure 7 shows the results of the benchmark
program on Tender. We changed the size of text
region (A) and the size of data region (B).

The processing time of process migration is pro-
portional to the size of text region or data region.
The processing time does not depend on type of re-
gion, because there is no difference of (A) and (B).

The processing time of case 2 is shorter than
that of case 1 for 2.7 millisecond which is process
time of virtual space creation. The processing time
of case 3 is shorter than that of case 2 for 2.0
millisecond which is processing time of creation of
the second table of virtual space.

6 Conclusion

In this paper, we propose Heterogeneous Virtual
Storage (HVS). HVS provides multiple virtual ad-
dress spaces. There are more than zero processes
on a virtual space. A process can migrate between
virtual address spaces.

We implemented HVS on T'ender, and explain
Tender operating system and describe about the
problems of the implementation, and the solution.

In order to evaluate the advantages of HVS, we
measured the processing time of process creation and
deletion, and process migration. That results show
HVS can reduce the processing time of process cre-
ation and deletion. The processing time of process
creation and deletion is reduced more than 1.8 mil-
lisecond. The processing time of process migration
is reduced more than 2.0 millisecond.

As a future work, we will evaluate HVS by using
application programs.

References

[1] H. Taniguchi, Y. Aoki, M. Goto, D. Murakami,
T. Tabata, "Tender Operating System based
on Mechanism of Resource Independence,” IPSJ
Journal, Vol. 41, No. 12, 2000, pp.3363-3374.

S. C. Jeffrey , M. L. Henry, J. F. Michael,
and D. J. Edward, ”Sharing and Protection
in a Single-Address-Space Operating System,”
ACM Trans. on Computer Systems, Vol.12,
No.4, 1994, pp.271-307.

L. Avraham, L. W. Joel, and S. Y. Philip, "Ef-
ficient LRU-based Bufferinf in a LAN Remote
Caching Architecture,” IEEE Trans. on PDS,
Vol.7, No.2, 1996, pp.191-206.

A. Yamamoto and H. Taniguchi, ”A Method
of Uniform Resource Capability Control on
Tender,” Proc. of 63th National Conven-
tions of IPSJ, Vol.1, 2001, pp.81-82.

